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Abstract

An AI system that is operating in an adversarial environment
should be able to provide safeguards for its internal informa-
tion. In other words, an adversary should not be able to per-
form diagnosis on the AI system’s internal information based
on the resulting observations during plan execution. The sys-
tem should be able to produce a plan that achieves the desired
objective while minimizing leakage about its internal infor-
mation. In this paper, we present an approach that allows an
AI agent to securely obfuscate its true goal (i.e., agent’s in-
ternal information) for as long as possible using a subset of
candidate goals. By making all the candidate goals equally
likely for as long as possible, the agent’s true goal is kept se-
cured. The AI agent may have to incur an additional cost to
reach its true goal, but this cost buys the obfuscation guar-
antee. Given a larger resource budget, greater obfuscation is
possible. We provide empirical evaluations of our approach
using IPC domains collecting key metrics to show its feasi-
bility.

1 Introduction
In an adversarial environment, an implicit requirement for an
AI agent is to minimize information leakage while achiev-
ing its objectives. If the agent’s activities are not secure, an
adversarial observer can use diagnosis to infer internal in-
formation and interfere with the agent’s objectives. Consider
the following domains: in military planning, adversaries ob-
serve troop movements to infer possible targets; in corporate
strategy, competitors predict each others future directions by
observing potential partnerships; in product design, compo-
nent specifications often portend new product’s functional-
ity. In such settings, the agent should generate behaviors that
can obfuscate its actual objective for as long as possible. The
execution of obfuscated behaviors may be more expensive.
This leads to the agent trading-off its available resources in
order to ensure privacy of the sensitive information.

Our problem setting considers two agents, an actor and an
observer. The actor can perform actions in the environment.
The observations, known to the actor and the observer, are
the result of the actor’s activities. The observations can be
partially or fully observable. Partially observable observa-
tions reveal some information about the actor’s actions and
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Figure 1: A gridworld example illustrating a stronger no-
tion of privacy. With an observation model that distinguishes
diagonal and orthogonal actions, the observer sees the same
sequence of observations for all the three goals regardless of
the agent’s true goal.

state but do not reveal it exactly, whereas the fully observ-
able ones convey the exact action taken by the actor and the
corresponding state transition. While the observer knows a
set of goals the actor could be pursing, the true goal is not
known to the observer. Therefore the objective is to securely
obfuscate the true goal while the actor is trying to achieve
it. In this work, we present approaches that the actor can uti-
lize to obfuscate its true goal for as long as the observation
model allows and in a cost-effective manner.

There have been recent works (Kulkarni, Srivastava, and
Kambhampati 2018; Masters and Sardina 2017; Keren, Gal,
and Karpas 2016b) which explore the problem of privacy
preservation and deception. We explore the goal obfusca-
tion problem introduced in Kulkarni, Srivastava, and Kamb-
hampati (2018). Our main contribution is twofold: introduc-
tion of a stronger definition of privacy with respect to the



observation sequence generated, and an approach to trade-
off additional cost incurred with the amount of obfuscation
achieved. The problem of goal obfuscation (Kulkarni, Sri-
vastava, and Kambhampati 2018) involves hiding the true
goal of the agent from the observer by making the obser-
vation sequence “consistent” with v candidate goals. Essen-
tially, consistent with v candidate goals means that, there
exists a plan with the same observation sequence to achieve
each of the v goals. However, we introduce a stronger defini-
tion of consistency, such that, when the solution computation
mechanism is run with either of the v goals as a “true goal”,
we get the same observation sequence. Thus, our solution
observation sequence makes all the v goals equally likely
for as long as possible. This preserves the privacy of the true
goal even when the observer has access to the computation
mechanism. Also, our approach can compute the cheapest
solution that satisfies the stronger privacy property. In the
following paragraph, we present an example that achieves
obfuscation with respect to v goals and satisfies the stronger
privacy property.

Consider the gridworld in Figure 1. Assume each cell
allows movement in all 8 adjacent cells with equal cost. The
initial state is at cell (0, 0). The candidate goals are given
by Goal1, Goal2, Goal3 and Goal4, and Goal2 is the actor’s
true goal. With v = 3, we select Goal1, Goal2 and Goal3
because they have higher landmark similarity than any other
combination of 3 goals (inclusive of true goal). The observa-
tion model emits two types of observation symbols for each
cell: o1 (marked by blue arrow) if the next cell is diago-
nally adjacent and o2 (marked by red arrow) otherwise. In
the Figure 1, we can see three plans where each reaches a
candidate goal. Each of these plans produce the same obser-
vation sequence given by {o2, o1, o1, o1, o1}. Each of these
plans is a secure goal-obfuscated plan, where v = 3. The ob-
servation sequence is the same regardless of the true goal. A
secure goal-obfuscated plan can be achieved by finding the
cheapest path to a closest point that is equidistant (in terms
of remaining steps) from each of the goals. In the example,
the equidistant state at cell (3, 4), is 2 steps away from each
goal. From this equidistant state, we check if there exists an
observation sequence which is common to the 3 goals and
reaches the goals in only 2 steps. From cell (3, 4), the obser-
vation sequence 〈o1, o1〉 satisfies the requirement. The four
equidistant states for the three candidate goals are marked in
brown color.

If the observation model allows finer observations, such
that, each grounded action is mapped to a unique observation
symbol, then a fully obfuscated plan might not be possible.
In such cases, our aim is to obfuscate the true goal for as long
as possible by computing a plan that achieves an equidistant
state, such that the cost from the equidistant state to each of
the goals is minimized. We also discuss a method for choos-
ing v goals among a set of n candidate goals, such that, we
can minimize the solution cost and maximize the overall
obfuscation. In the following sections, we discuss our ap-
proach in detail. We also establish upper and lower bounds
on the cost of solutions which satisfy our definition of obfus-
cation. We present evaluation of our approaches using three
International Planning Competition (IPC) domains, namely,

Blocksworld, Logistics and Zenotravel.

2 Background and Preliminaries
2.1 Classical Planning
A classical planning problem can be defined as a tuple
P = 〈D, I, G〉, where D = 〈F ,A〉 is the actor’s domain
with F representing a finite set of fluents that define the
state of the world s ⊂ F , A is a finite set of actions avail-
able to the actor, and I, G ⊂ F representing the initial state
and goal subformulae. Each action a ∈ A is a tuple of the
form 〈c(a), pre(a), eff+(a), eff−(a)〉 where c(a) denotes
the cost of an action, pre(a) ⊆ F is a set of precondi-
tions for the action a, eff+(a) ⊆ F is a set of positive
effects and eff−(a) ⊆ F is a set of negative effects, i.e.,
Γ(s, a) |= ⊥ if s 6|= pre(a); else Γ(s, a) |= s ∪ eff+(a) \
eff−(a) where Γ(·) is the transition function. The cumula-
tive transition function is given by Γ(s, 〈a1, a2, . . . , an〉) =
Γ(Γ(s, a1), 〈a2, . . . , an〉). The solution to P is a plan or
a sequence of actions π = 〈a1, a2, . . . , an〉, such that,
Γ(I, π) |= G, i.e., starting from the initial state to the goal.
The cost of the plan is, cost(π) =

∑
ai∈π c(ai).

Note that, we assume all the actions in the planning prob-
lem are of uniform cost equal to 1. In other words, the length
of the plan is equal to the cost of the plan and an optimal plan
is a shortest length plan for the given planning problem.

2.2 Goal Obfuscation Planning Problem
The goal obfuscation planning problem, as defined in
(Kulkarni, Srivastava, and Kambhampati 2018), involves
two agents: an actor planning in the environment and an ob-
server. The observer has access to the domain model of the
actor, which includes the set of fluents, actions and the initial
state of the actor. The observer also has access to the set of
candidate goals but is unaware of the true goal of the actor.
Whenever the actor performs an action in the environment,
an observation is emitted. The observation model available
to the observer is deterministic and is accessible to both the
agents.

Definition 1. A goal obfuscation planning problem is a tu-
ple, PGO = 〈D, I,G,Ω,O〉, where,

• G = {GA ∪G1 ∪G2 . . . ∪Gn−1} is a set of n candidate
goal conditions, and GA is the true goal of the actor.

• Ω = {oi|i = 1, . . . ,m} is a finite set of observations
symbols corresponding to the domain.

• O : (A × S) → Ω is the observation function which al-
lows either partial or full observability mapping the pair:
action taken and state reached to observation symbols

When the observation model allows partial observability,
multiple 〈a, s′〉 pairs correspond to the same observation.
When it allows full observability, each observation corre-
sponds to a unique 〈a, s′〉 pair. A plan solution to a goal-
obfuscation planning problem achieves the true goal while
obfuscating it from an adversarial observer for as long as
possible.



2.3 Secure Goal-Obfuscation
An important point to note is that the observer only receives
the observation sequence associated with the plan executed
by the actor. While the observer has access to the agent’s
goal set G in PGO, he/she is unaware of the agent’s true
goal. A secure goal-obfuscated plan is a solution to PGO,
that minimizes the bias of the observation sequence towards
the true goal. With respect to a chosen set of v goals, such
that, Gv ⊆ G ∧ GA ∈ Gv , if we can make the observation
sequence associated with the actor’s plan identical for all the
v goals, then we can say that the true goal is securely obfus-
cated. The value of v can be v ≤ n. We will now distill three
important properties of a secure goal-obfuscated plan: (1)
For each goal in Gv , there should exist a plan which achieves
the goal in l number of steps, (2) The observation sequence
associated with v plans that each achieve a goal in Gv should
be the same, (3) The observation sequence should not be
biased by any goal in Gv . The first and second properties
are straight-forward. The third property states that the actor
should be able to compute the same observation sequence
while generating a plan solution to any of the v goals. If
the above mentioned properties are followed, the observa-
tion sequence associated with the plan does not disclose any
specific information about the true goal.

2.4 Cryptography Assumptions
We now list a few standard assumptions in cryptography and
secure multi-party computation literature presented in sev-
eral prior works (Lindell 2005; Štolba 2017). The properties
listed in the Subsection 2.3 can be interpreted through these
assumptions. The following assumptions specify the proper-
ties on the behavior of the agents and the algorithm.
Assumption 1. Adversary knows the actor’s algorithm.
This means that the adversarial observer has access to the
algorithm and knows how the algorithm works. For exam-
ple, the adversary knows what states are generated by the
algorithm.
Assumption 2. Independence of inputs. This means that
the adversary can run the algorithm with different inputs.
For example, the adversary can set different goals as true
goal to check the variability of the output.
Assumption 3. Delivery of observations is fair and in-
order. This means that when the actor takes an action and
reaches a corresponding state, only then the adversary re-
ceives the corresponding observation. And the delivery of
each observation occurs in the order in which it was emitted
by the actor’s plan execution.
Assumption 4. Semi-Honest Adversary. This means that
the adversary is a passive adversary and follows the algo-
rithm and the protocol correctly but may glean information
from the execution to learn about the private information of
the actor.

All the four assumptions are commonly found in cryptog-
raphy literature. The first two assumptions delineate the es-
sential properties of a good obfuscating algorithm. The As-
sumption 1 states that the agent should not rely on the pri-
vacy of the algorithmic mechanism itself. The Assumption

2 states that the adversary may rerun the algorithm with dif-
ferent inputs, therefore the algorithmic mechanism should
be immune to reruns. The third and fourth assumptions out-
line the behavior of adversary. The third assumption states
that the adversary can not manipulate the execution of plan
and delivery of the observations. We assume that our adver-
sary is a passive adversary that follows the protocol. These
assumptions are significantly different from those typically
taken in the AI community in that they do not rely on as-
sumptions about the adversary’s goal recognition model.

3 Computation of Secure Goal-Obfuscated
Plans

In this section, we will discuss our approach for computing
a secure solution to a goal obfuscation planning problem.
Given the properties in Subsection 2.3 and assumptions in
Subsection 2.4, we can say the following:

Definition 2. A secure goal obfuscated planner, computes
a plan solution πPGO , and an observation sequence OPGO ,
to a PGO = 〈D, I,Gv,Ω,O〉, where, Γ(I, πPGO ) |= GA,
such that, ∀G′ ∈ Gv , if G′ is set as the true goal of the
actor, there exists a plan π′PGO

, and an observation sequence
O′PGO

, where Γ(I, πPGO ) |= G′ ∧O′PGO
= OPGO .

Therefore, given a set of v goals, a secure goal-obfuscated
planner will generate the same observation sequence when
any of the v goals is set as a true goal. For a given problem,
if there does not exist a secure goal obfuscated plan (say
the observation model doesn’t allow for it), then the planner
computes a partial plan starting from initial state that sat-
isfies the privacy assumptions for as long as possible. This
partial plan guarantees secure obfuscation for the entirety of
its length (although not until the goal). In such cases, we
compute partial secure plans which minimize the distance to
the true goal in which revealing observations occur. The pro-
cess of computing secure goal-obfuscated plans consists of
two phases: (1) selection of v goals from the set of n candi-
date goals and (2) computation of a secure goal-obfuscated
plan and observation sequence. The first phase selects v can-
didate goals (inclusive of true goal) that have higher similar-
ity with each other. And then, the second phase computes
a plan whose observation sequence is consistent with all of
the goals present in the chosen set of v goals.

3.1 Decoy Goal Selection
We choose a set of v−1 candidate goals such that these goals
have higher similarity with the true goal and with each other.
We use a landmark based measure to compute the similar-
ity between the candidate goals. There is a prior work that
has made use of disjunctive landmarks for diverse planning
(Bryce 2014). In automated planning, for a given problem
instance each landmark is a subset of fluent instantiations
that every plan must satisfy in order to solve the problem.
The intuition behind using landmarks is that, the goals with
common landmarks will go through similar states/actions
and thereby introduce inherent ambiguity in the plans that
achieve the candidate goals. We can choose Gv as follows:



1. For each goal, G ∈ G, extract the set of landmarks and
add each distinct landmark to a set L.

2. Initialize each landmark L ∈ L with an empty list.
3. For each distinct landmark L, if it belongs to a goal G,

add G to L’s list.
4. Order the landmarks in L in decreasing order of the num-

ber of associated goals.
5. Select all the landmarks in L that are associated with at

least v goals. If no such landmarks exist then starting from
the first select all landmarks until there are v unique goals.

6. Order the unique goals in the decreasing order of their
frequency in the selected landmarks.

7. If the true goal appears in first half then starting from the
first goal (otherwise, starting from the last goal), divide
the goals in groups of unique v goals.

8. Select the group of v goals that includes the true goal.

Given the set of v goals, we can obtain a lower bound on
the cost of our secure goal-obfuscated plan.
Proposition 1. For given Gv , let πGi

be the optimal plan to
reach the farthest Gi in Gv . If πv is a secure goal obfuscated
plan that solves PGO then,

cost(πv) > cost(πGi)

The above proposition states that the cost of a solution to
PGO cannot be cheaper than the optimal cost to reach the
farthest goal in the set of v goals. This proposition can be
useful in a resource sensitive setting, the decoy goals can
be chosen such that the lower bound of the solution cost is
smaller than the available cost-bound. Note that in our set-
ting, all the actions have unit cost.

3.2 Secure Goal-Obfuscated Plan
Once we have chosen the set of v goals, the next step is
to compute a secure goal-obfuscated plan. As stated in the
properties listed in Subsection 2.3, the observation sequence
should not be biased by any particular goal in Gv . In order to
achieve that, we do the following: (1) we first compute a set
of states that are equidistant to each of the goals in Gv and (2)
then we compute a bounded length plan from the equidistant
state to a goal, such that the observation sequence is same for
plans reaching other goals from the equidistant state. We call
it bounded length belief plan, this idea is similar to that of
“k-ambiguous plan” in Kulkarni, Srivastava, and Kambham-
pati (2018). Formally, an equidistant state and a bounded
length belief plan are defined as follows:
Definition 3. An equidistant state, e, is a state in the
state space of a PGO from which there are d number of
steps/observations remaining to each of the v goals.

Each of the v goals can be achieved in equal number of
steps from an equidistant state. When the observation model
allows partial observability, the observer operates in the be-
lief space. For every observation emitted, the observer’s be-
lief space is updated to reflect all the possible states consis-
tent with the observation sequence. For example, in Figure
1, the observation o1, is consistent with the actor being in

Algorithm 1: Computation of Equidistant States
1 procedure Equidistant Computation(D,Gv,Ω,O)
2 open← Priority Queue() . Open list

3 equidistant← Priority Queue() . Equidistant states

4 closed← {} . Closed list

5 h diff, h max← Heuristic Computation(Gv)
6 open.push(I, h max)

7 if h diff = 0 then
8 equidistant.push(I, h max)

9 end
10 while open 6= ∅ do
11 s← open.pop()

12 closed← closed ∪ s
13 for a, s′ ∈ successors(s) do
14 g(s′)← g(s) + cost(a)

15 h diff, h max← Heuristic Computation(Gv)
16 if s′ /∈ open and s′ /∈ closed then
17 open.push(s′, g(s′) + h max)

18 if h diff = 0 then
19 equidistant.push(I, g(s′) + h max)

20 end
21 else if g(s′) < gprev(s′) then
22 if s′ /∈ open then
23 closed← closed \ s′

24 open.push(s′, g(s′) + h max))
25 if h diff = 0 then
26 equidistant.push(I, g(s′) + h max)

27 end
28 else
29 update priority to g(s′) + h max

30 end
31 end
32 end
33 end
34 return equidistant
35 procedure Heuristic Computation(Gv)
36 hGv ← {}
37 forG ∈ Gv do
38 compute hG

39 hGv ← hGv ∪ hG

40 end
41 h diff ← max(hGv )−min(hGv )

42 return (h diff,max(hGv ))

any of the 4 diagonally adjacent cells. On the other hand,
when the observation model allows full observability, there
is no belief space. Note that, as mentioned before, in case
of full observability only partial plan, that is plan up to the
closest (to the goals) equidistant state is secure. In the case
of partial observability, we compute bounded length belief
plan.

Definition 4. A bounded length belief plan, πGA
, is a plan

of length, d, associated with an observation sequence, Ov ,
where Γ(e, πGA

) |= GA, then ∀ G ∈ Gv ∃ πG of length
d and associated with observation sequence Ov , where
Γ(e, πG) |= G. Here d is the number of remaining steps
from e to each of the goals.

From an equidistant state, we perform a blind search for
bounded length d in the belief space. After d steps if all the



goals are found such that the observation sequence is same
then we output the bounded length belief plan and its obser-
vation sequence.

A secure goal-obfuscated plan is then generated by com-
puting a cheap plan to an equidistant state, e and then com-
puting a bounded length belief plan from e to the goals. The
computation of the first part is done by performing a state
space search. We search the state space to compute a list of
equidistant states. If from a given state, the nearest and the
farthest of the v goals have the same number of remaining
steps then we add it to the list of equidistant states. The de-
tails of this procedure are given in Algorithm 1. The com-
putation of second part constitutes performing a bounded
length blind search in the belief space starting from each
equidistant state until the solution is found. We process the
list of equidistant states obtained in the first part and start
our bounded length belief search from the closest equidis-
tant state to the goals. The details of this procedure are given
in Algorithm 2.

Given the set of equidistant states in the entire state space
of PGO, we can obtain a upper bound on the cost of our
secure goal-obfuscated plan.

Proposition 2. For given Gv , let E = {e1, . . . , en} be the set
of all the equidistant states for PGO, such that, ∀ei ∈ E , πIei
be the plan from initial state to ei and πeiG be the plan from
ei to a G ∈ Gv . If πv is a secure goal obfuscated plan that
solves PGO then,

cost(πv) 6 argmax
e∈E

cost(πIe ) + cost(πeG)

The above proposition states that the cost of a solution
to PGO is bounded by the cost of a plan via the costliest
equidistant state. This proposition can be useful in a resource
sensitive setting, the set of equidistant states can be filtered
further before starting belief space search such that the upper
bound on the solution cost is smaller than or equal to the
available cost-bound.

4 Empirical Evaluation
In this section, we evaluate the scope and usability of our
approach. Our empirical evaluation measures the following
metrics:

1. The impact of different observation models on the extent
of obfuscation.

2. The trade-off between additional cost and extent of obfus-
cation possible.

3. The comparison between run time and plan costs for goal
obfuscation planning versus optimal planning.

In the following subsections, we will discuss the domains
used, and the setup of the problems and observation models
for each of these. Then we will discuss the observations and
results derived for each of the three evaluation objectives.

4.1 Domains and Experimental Setup
We use three IPC domains, namely Blocksworld,
Logistics and Zenotravel to evaluate our approach.

Algorithm 2: Computation of Bounded Length Belief
Plan and Observation Sequence

1 procedure belief plan Computation(equidistant,D,Gv,Ω,O)
2 hmin ←∞
3 farthestequi ← ∅
4 while equidistant 6= ∅ do
5 sequi, hequi ← equidistant.pop()

6 if hequi < hmin then
7 farthestequi ← sequi

8 end
9 bequi ← {sequi} . Initial belief

10 open← Priority Queue() . Open list

11 closed← {} . Closed list

12 open.push(〈sequi, bequi〉)
13 closed← closed ∪ bequi

14 while open 6= ∅ do
15 s, b← open.pop()

16 if g(s) > g(sequi) + hequi then
17 break
18 end
19 if b |= GOAL-TEST(Gv) then
20 return obs-sequence for s

21 end
22 for a, s′ ∈ successors(s) do
23 o← O(a, s′)

24 b′ ← Belief-Generation(b, a, o)
25 g(s′)← g(s) + cost(a)

26 if b′ /∈ closed then
27 open.push(〈s′, b′〉)
28 closed← closed ∪ b′

29 end
30 end
31 end
32 return obs-sequence for farthestequi

33 procedure Belief Generation(b, a, o)
34 b′ ← {}
35 for ŝ ∈ b do
36 for â ∈ A do
37 if ŝ |= pre(â) andO(â,Γ(ŝ, â)) = o then
38 b′ ← b′ ∪ Γ(ŝ, â)

39 end
40 end
41 end
42 return b′

For each of the domains, we randomly generated 50 prob-
lem instances. For the Blocksworld domain, we gener-
ated problems with 4 to 8 blocks and towers of maximum
height 4 for both initial and goal states. For the Logistics
domain, we generated problems with goals consisting of 2 to
6 facts. For the Zenotravel domain, we generated prob-
lems with goals consisting of 2 to 6 facts. We generated 5
random candidate goals (n=5) for each problem.

In order to explore the first evaluation objective, we gener-
ated both partially and fully observable observation models
for all the three domains. The partially observable models
have many-to-one mapping of action-state pairs to observa-
tion symbols. For the sake of simplicity, we used lifted ac-
tion names as observation symbols. Therefore, the grounded
actions taken and associated states are mapped to the cor-



Domain Metrics
Observation Models

Many-to-One One-to-One

Blocksworld
Avg obfuscated length (%) 81.50 24.31

Avg run time 46.85 58.39
SD run time 79.95 73.24

Logistics
Avg obfuscated length (%) 84.06 62.93

Avg run time 244.68 256.18
SD run time 249.46 250.12

Zenotravel
Avg obfuscated length (%) 73.75 48.65

Avg run time 216.14 224.14
SD run time 216.49 213.68

Table 1: Empirical evaluation for different types of obser-
vation models. We report average percentage of obfuscated
plan length, and the average and standard deviation of time
taken (in seconds) to compute the obfuscated plan.

Domain Metrics
Cost-bounds

+20% +50%
Blocksworld Avg obfuscated length (%) 71.90 77.75
Logistics Avg obfuscated length (%) 73.25 83.58
Zenotravel Avg obfuscated length (%) 65.81 69.87

Table 2: Empirical evaluation to explore the cost versus ob-
fuscation trade-off. We examine the extent of obfuscation
for different cost-bounds. We report average percentage of
obfuscated plan length.

responding lifted action names. For the Blocksworld
domain, the observation symbols were pickup, putdown,
stack, unstack. For the Logistics domain, the observa-
tion symbols were load-truck, unload-truck, load-airplane,
unload-airplane, drive-truck, fly-airplane. Finally for the
Zenotravel domain, the symbols were board, debark, fly,
zoom, refuel. The fully observable models have one-to-one
mapping, that is the observer is aware of the actions taken
and the states reached by the agent.

In order to balance the run-time between the state space
search and the belief space search, we go back and forth be-
tween these two searches. For a given problem, when the
heuristic value reaches some threshold (say, reduces by 50%
of its value from the initial state), we start processing the
states in the equidistant queue. We then run the belief space
search for the states in equidistant queue until they are ex-
hausted. Once the equidistant queue has been exhausted, we
restart the state space search again to find further equidistant
states exhaustively. After which, we again start with belief
space search. We can modulate the heuristic threshold ac-
cording to the problem types and desired objectives. This
strategy can be especially helpful when the state space is
large, if the planner spends all its time resource in exploring
the state space, there will be no resource left for exploring
the belief space. For the experiments, we kept the threshold
of 50%.

4.2 Results
The evalution results are presented in Tables 1, 2 and 3. We
modified the STRIPS planner pyperplan (Alkhazraji et al.
2016) to implement our algorithms. To compute equidis-

Domain Metrics Optimal Plan Obfuscated Plan

Blocksworld
Avg plan cost 5.64 6.57
Avg run time 0.11 46.85
SD run time 0.05 79.95

Logistics
Avg plan cost 26.40 27.94
Avg run time 14.87 244.68
SD run time 23.77 249.46

Zenotravel
Avg plan cost 8.3 10.79
Avg run time 10.18 216.14
SD run time 13.03 216.49

Table 3: Empirical evaluation to explore differences in op-
timal plan to goal and obfuscated plan to goal. We report
average plan cost and average, standard deviation of time
taken in seconds to compute the solution to the goal.

tant states we used lmcut heuristic1. We ran the exper-
iments with v = 3 for all the domains. We ran our ex-
periments on 2.7 GHz Intel Core i7 processor with 16 GB
RAM. The experiments were run with 15 minutes time-out
for each problem instance. The following number of prob-
lems reached time-out before a solution could be found: 4
out of 50 problems in the Blocksworld domain, 19 out
of 50 problems in Logistics and 22 out of 50 problems
in Zenotravel. These problems were not considered in
the results.

Table 1 Through Table 1, we examine how the different
observation models affect the length of obfuscated part of
the plan solution. It is not always possible to find a com-
pletely secure goal-obfuscated plan. In such cases, we output
a partial solution. Here the obfuscated solutions were found
without any resource constraints. For the fully observable
observation models, we see that the Blocksworld domain
had the least obfuscated solutions. For the partially observ-
able observation models, we see that Logistics domain
had the most obfuscated solutions.

Table 2 Through Table 2, we evaluate the impact of con-
straining the additional cost on the length of obfuscated parts
of the solution. We ran experiments with cost bound of 1.2
and 1.5 times the optimal cost of the true goal. By only in-
curring 20% additional cost, we are able to generate plans
with substantial portions obfuscated. Increasing the addi-
tional cost does not dramatically improve the obfuscation
performance. This highlights the importance of the obser-
vation model and candidate goal selection in the resource
bounded goal obfuscation problem.

Table 3 Through Table 3, we compare the run-time and
cost differences between optimal and goal-obfuscated plans.
For all the three domains, the plan cost of obfuscated plans is
slightly higher than optimal plans. Although the main differ-
ence lies in the amount of time taken to compute the obfus-
cated plans. Given there is enough time available to compute

1By using lmcut heuristic, we approximate the equidistant
states since it is not the same as the actual optimal cost h∗(·).



obfuscated plans, the plan cost incurred for the obfuscation
guarantee is not too high.

5 Related Work
Planning and diagnosis have long been recognized for their
inferential similarities (Sohrabi, Baier, and McIlraith 2010).
When planning systems are deployed, diagnosis is seen
as a mechanism to refine its models of its own actions
(Kuhn et al. 2008), the environment (Molineaux, Kuter, and
Klenk 2012), and of adversary capabilities (Birnbaum et al.
1990). The combination of planning, execution, diagnosis,
and learning underpins much of the research in the Metacog-
nition (Cox 2005) and Goal Reasoning (Aha 2018) commu-
nities. From this perspective, our work is an extension to
understanding how planning, goal reasoning, and execution
interact in an adversarial world.

Recently, there has been some interest in exploring no-
tions of privacy preservation, deception, etc., in adversar-
ial scenarios (Kulkarni, Srivastava, and Kambhampati 2018;
Pozanco et al. 2018; Masters and Sardina 2017; Shekhar and
Brafman 2018; Keren, Gal, and Karpas 2016b). In Kulka-
rni, Srivastava, and Kambhampati (2018), the authors in-
troduce the problem of goal obfuscation and provide a sat-
isficing solution to the problem, which is not guaranteed
to be secure. In Pozanco et al. (2018), the authors explore
a setting, where an agent plans to prevent another agent
from achieving certain goal. In this case, both the agents
are actively planning towards a goal. However the authors
do not use any obfuscating strategy to hide their intent
of blocking. In Masters and Sardina (2017), the authors
present an approach to obfuscate goals by making one goal
more likely than the other, however their approach does
not support deception when the adversary knows their al-
gorithm. In Keren, Gal, and Karpas (2016b), the authors
obfuscate a goal with only one candidate goal that shares
maximal non-distinct path, obfuscating part of the plan.
Most of these works use goal-recognition/plan-recognition
modules (Ramırez and Geffner 2009; 2010; E-Martin, R-
Moreno, and Smith 2015; Sohrabi, Riabov, and Udrea 2016;
Keren, Gal, and Karpas 2016a) to make inferences about
the agent’s goals and to achieve deception. However, us-
ing a goal recognition module will result in the system be-
ing prone to making assumptions about the observer’s goal-
recognition capabilities. On the other hand, we do not make
any assumptions about the observer’s goal recognition capa-
bility but instead provide obfuscation for the worst case ad-
versary. We also explore the obfuscation versus cost trade-
off in such scenarios. We do this by computing a cheapest
solution to a goal obfuscation problem that is secure and fol-
lows certain standard cryptography assumptions.

6 Conclusion
In this work, we presented an approach to compute secure
goal-obfuscated plans to conceal the true goal of an AI agent
from an adversarial observer. Our approach provides a cost-
efficient solution that satisfies four standard cryptographic
assumptions to ensure that goal obfuscated plan is secure.
Under these assumptions, the AI agent may incur an addi-

tional cost to reach its true goal, but the adversary will not
be able to diagnose the true goal of the agent. Depending on
the resource budget of the agent, it can modulate the amount
of obfuscation it needs. A secure goal-obfuscated solution
is achieved by obfuscating the true goal of the agent with
v − 1 other candidate goals. In order to choose these can-
didate goals, we introduce a goal similarity measure that
aids in selecting goals that share common landmarks with
the true goal. After selecting the set of decoy goals, we per-
form a state space search and followed by a bounded length
belief space search to compute a secure goal-obfuscated
solution. We present some theoretical guarantees on the
goal obfuscation mechanism, and evaluate our approach us-
ing three IPC domains, BlocksWorld, Logistics and
Zenotravel, to show the feasibility and usefulness of our
approach.

This work opens a number of research questions. First,
the approach presented here is greedy in that the initial se-
lection of v goals is not revisited. While exploring all pos-
sible sets of goals is computationally intractable, additional
work should define methods with intelligent backtracking
and improved heuristics. Second, the approach depends on
existence of equidistant states in a domain. There could be
domains where such states are hard to find or do not ex-
ist for some problems. In future work, we intend to explore
secure solutions for such domains. Third, to demonstrate the
value of this approach, we would like to apply it to real world
problems. In doing so, additional features of the observation
model may be considered.
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