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Abstract— A mechanism to protect a controlled system in the
event of a priori unknown abnormalities (e.g. faults, attacks)
is the key to designing resilient and robust control systems.
We explore bi-level control design architectures in which a
supervisory Reinforcement Learning (RL) agent augments an
over-observed controlled system. The RL agent monitors sensor
signals, detects and takes action to mitigate unknown sensor
faults. We use the system dynamics to extract features and
develop a design method for the cost function of the RL module.
We theoretically show that the designed cost function has a
unique optimal policy that enables the diagnosis of arbitrary
constant sensor faults. To conceptualize our architecture, we
consider a linear version of an over-observed chemical process,
controlled by a Linear Quadratic Gaussian (LQG) Servo-
Controller with Integral Action. Our experimental results,
coupled with our theoretical analysis, show that the RL-agent
is successful in identifying and mitigating the faults in one or
more sensors in an online fashion.

I. INTRODUCTION

Cyber-Physical system abnormalities such as faults or
malicious attacks are inevitable in today’s increasingly inter-
connected world. The security of these systems has been the
main focus of several communities with significant research
activity that continuous into its third decade [1], [2], [3]. In
particular, in the control community, the efforts have focused
on fast and efficient methods of detection and tracking
of misbehaviors [4], [5]. The complexity of the problem
has led to approaches based on a taxonomy of the types
of faults and attacks on the control system (see [6] and
references therein). The drawback is that the applicability
of these security solutions is restricted to particular attacks
and systems. They cannot be easily generalized across CPS
systems or faults. In many cases, they also suffer from the
curse of dimensionality, especially in discrete event systems
[7]. A resilient system design allows for the continuation
of mission performance under unknown abnormalities as
well as tracking and characterization of these abnormalities.
Model-based diagnostics is a well-established research field
that is closely related to resilience constraints in system
design. This field has yielded a plethora of approaches that
require strong assumptions on a priori intrinsic knowledge of
model dynamics [1], [8], [9]. Fault Tolerant Control (FTC)
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[10], [11] concerns the use of model-based approaches in
the design of control systems. The traditional FTC methods
rely on prior knowledge of the abnormalities and their
effects on the system, i.e., known system dynamics and
faults. The performance of such model-based approaches is
limited by model inaccuracies and is sensitive to model miss-
specification. The traditional design is typically composed
of a fault detection module which – upon detection of the
fault – switches to a low-level controller appropriate for that
specific fault from a set of predefined fault controllers. The
sequential nature of such design introduces a time-delay into
the system that may degrade performance, even destabilize
the system.

To mitigate the delay introduced by the traditional FTC
design, Blended Control (BC) proposes a hierarchical design
with a weighted combination of low-level controllers. The
weights with which the controllers get combined constitute
a blending weight vector which is set by a high-level control
module. A deep-learning BC design [12] uses an RL algo-
rithm to set the blending weights, to provide a data-driven
approach to BC, which in turn eliminates the need for prior
knowledge of the system dynamics. In such architecture,
the high-level control effectively implements the low-level
controller and does not directly interact with the controlled
system. However, BC designs are intrusive in the sense that
they aim to synthesize a fault-tolerant controller.

Our contribution is twofold: (I) We explore a bi-level
supervisory control design for non-intrusive tracking and
mitigation of faults in control systems. We explore the basic
design steps so that the AI-enabled supervisory module will
be able to operate in conjunction with the controlled system.
Furthermore, we validate our design in simulation for a
chemical process in the presence of additive sensor faults
with unknown magnitude. (II) We offer a method to design
a cost function for the RL agent’s successful training, follow-
ing a model-based Inverse Reinforcement Learning approach.
The context within which we develop our theory focuses on
either exact or over-observed systems, that is systems the
state of which is delivered through either a single observer
or multiple independent observes, and through some sensor
fusion scheme. Systems with redundancy in observations
lie at the core of modern intelligent control in industrial
systems [13] and also provide us with a relevant fault/attack
scenario under which system state is observed by many but
not reliable sensing units.

The rest of the paper is organized as follows: Section II
describes the overall architecture. Section III describes our
closed-loop control system. In Section IV, we present the
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Fig. 1: The bi-level architecture with supervisory RL controller that takes action to defend the closed-loop plant against sensor faults
with minimal intervention. The plant is prone to acceptable actuation and sensor noises. These are assumed to be zero-mean Gaussian
and with covariance parameters known to the low-level controller. The input information arrives from the sensor fusion process out of a
collection of heterogeneous sensors into some output signal y that is fed into the low-level controller. The RL agent is exposed to the
output of the sensor and acts on its module.

high-level RL controller and present our approach to cost
design in Section V. The training procedure and experimental
results are discussed in Section VI. Finally, we make some
concluding remarks in Section VII. Proofs of technical
results are placed in the Appendix.

II. BI-LEVEL FAULT-AWARE CONTROL ARCHITECTURE

Figure 1 illustrates the main components of a bi-level
architecture considered in this work, that is comprised of:

• A controlled system which consists of: (I) A plant, (II)
sensor module, (III) a closed-loop low-level controller.
This controller can be a pre-designed traditional con-
troller, e.g. PID, LQG, MPC, or a trained RL agent to
drive output towards a reference signal.

• A diagnostic module which monitors the system for
faults. The output of the diagnostic module provides
the input (observations and cost signal) to the high-level
RL-based controller.

• A high-level RL based controller which computes a
mitigative action based on the input from the diagnostic
module. The RL action is an input to the controlled
system, e.g. an additive term to the sensor readings.

One advantage of this design idea is that it aims to guaran-
tee sensor-based fault diagnostics for the controlled system
without the need to re-synthesize the low-level controller.
The challenge is to explore the terms under which the RL
will be trained, collect data and take action to secure the
system from abnormalities in cooperation with the low level
closed-loop system. We will see in the sections to follow that
this is a non-trivial task.

III. CONTROLLED SYSTEM

In this section, we discuss the elements of the controlled
system as illustrated in Figure 1, that is the system dynamics,
the low-level controller specs and the sensing component we
will consider in this work.

A. State Equation

We consider linear time invariant

xt+1 = Axt +B ut + Γ ξt, (1)

where x ∈ Rnx is the state vector, A ∈ Rnx×nx is the state
matrix, u ∈ Rnu is the control signal, B ∈ Rnx×nu is the
input matrix, ξt ∈ Rnξ is a noise vector of Gaussian white
noise, and Γ ∈ Rnx×nξ is the diffusion matrix associated
with the process noise source.

B. Sensor Module & Fault Models

The sensor module is instrumental in our framework. It
consists of sensing units prone to standard noise but also
vulnerable to faults or attacks. Also, it will be the gate where
the RL agent will apply its actions. In this work we will
consider two types of sensors:

1) A single sensing unit that delivers output

yt = C xt +N ηt + ϕt (2)

where C ∈ Rny×nx the output matrix, ηt ∈ Rnη a
vector of white noise with N ∈ Rny×nη diffusion
matrix, and vector ϕt ∈ Rny models disturbance due
to possible faults.

2) A multi-sensing unit, that comprises of s > 1 sensors
that observe system states independent of each other.
Like the single-unit case, every sensor has its own fun-
damental inaccuracy modeled via sensor noise sources
that are Gaussian in nature. Furthermore, sensors are
vulnerable to additive faults modeled as constant, but
uncertain, bias. Bias is the simplest and most common
type of fault or attack. It can occur due to incorrect
calibration, physical changes in the sensor system or
it can be the result of types of jamming attacks [14],
[15]. With these in mind, the kth sensor outputs the
following signal:

y
(k)
t = Ck xt +Nk η

(k)
t +ϕ

(k)
t , k = 1, . . . , s. (3)
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Here Ck ∈ Rny×nx is the output matrix of the kth

sensor, η(k)t ∈ Rnη the sensor noise and Nk ∈ Rny×nη

is the associated diffusion matrix. Vector ϕk
t ∈ Rny is

a disturbance vector that models possible faults on the
sensor. For simplicity, the sensor fusion module that
feeds the low level controller is the average of sensors’
outputs, i.e.:

yt =
1

s

s∑
k=1

[
Ck xt +Nk n

(k)
t + ϕ

(k)
t

]
= Cxt +

1

s

s∑
k=1

[
Nk n

(k)
t + ϕ

(k)
t

]
,

(4)

where C ∈ Rny×nx is the cumulative output matrix of
xt. Provided (A,C) is observable, the rationale behind
selecting (4) as the input signal is that through this
observation redundancy, the effect of sensor noise is
averaged out.

For s = 1 Eqns. (3) and (4) boil down to (2) simplifying
to single sensor measurements. However we will deliberately
distinguish the s = 1 and s > 1 cases, both because of
the way we will design RL agent’s actions and interpret
its behavior towards identifying and mitigating faults as
we will explain in the sections to follow, and because of
the significance of multi-sensing/over-observed systems and
sensor fusion methods in industrial control systems.

Assuming controllability and observability of (1)-(2) , (1)-
(4), and that we have information about the process and
sensor noise statistics, we can design a linear LQG Servo
Controller with integral action [16]. The controller includes
a state estimator and implements an estimator feedback law
and with gain that optimizes a quadratic cost in the mean
value sense. The result is that output yt asymptotically tracks
reference signal rt also in the sense of mean value. We will
use the standard Kalman estimator, with dynamics

xt+1|t = Axt|t−1 +B ut + L (yt − C xt|t−1), (5)

where xt+1|t =: x̂t+1 ∈ Rnx is the state prediction before
update, at time t+ 1, and the Kalman output

xt|t = (Inx
−MC)xt|t−1 +M yt, (6)

where Inx
is the nx × nx identity matrix. In (5) and (6), L

and M are the Kalman and innovation gains, respectively. In
this paper we consider linear quadratic servo controllers with
integral action (LQG-i) scheme for our low level controller.
To this end, the integrator dynamics are

x
(i)
t+1 = x

(i)
t + (rt − yt) (7)

where rt ∈ Rny is the given reference signal. The control
law reads

ut = −
[
Kx̂ Kx(i)

] [
xt|t

x
(i)
t

]
(8)

for matrices Kx̂ and Kx(i) , designed to minimize some
quadratic cumulative objective functional1.

1Details of Kalman filter gains and linear quadratic servo controllers with
integral action are beyond the scopes of this work, and thus omitted. We
refer the interested reader to [16] for detailed analysis.

C. Closed-loop dynamics

If we combine (1) - (8), we can express the coupled system
dynamics, that acts on the augmented state vector

X =

 x
x̂
x(i)

 ∈ R2nx+ny ,

and updates according to

Xt+1 = AXt +BNt +∆Dt, (9)

where

Nt =


ξt

η
(1)
t
...

η
(s)
t

 ∈ Rnx+snη , Dt =


ϕ
(1)
t
...

ϕ
(s)
t

rt

 ∈ R(1+s)ny ,

is the lumped stochastic vector that includes all sources of
noise, and the disturbance vector that includes (possible)
sensor biases together with the reference signal, respectively.
Matrices A,B,∆ are obtained from straightforward algebra
and in closed forms that we omit to state due to space
limitations.

D. Preliminary Results

We will conclude this section with the first and second
moment expressions of (9), which we will use in section V
to design a cost function for the RL-agent. Under zero-
mean, Gaussian assumption and statistical independence of
elements Nt, we have

E[Xt] = AtE[X0] +

t−1∑
l=0

At−1−l∆Dl, t > 0. (10)

If we further assume that rt ≡ r and that disturbances are
constant, we can write Eq. (10) in a more concise form:

E[Xt] = AtE[X0] +Wt−1D, (11)

where Wt−1 :=
∑t−1

l=0 A
t−1−l∆, and D is independent

of time having assumed that both faults and reference are
constant. Furthermore,

E[xt] = C̃E[Xt] = C̃AtE[X0] + C̃Wt−1D, (12)

for C̃ := [Inx
: Onx

: Ony
] ∈ Rnx×(2nx+ny), where Onx

is the nx × nx zero matrix. The asymptotic behavior of xt

in expectation, yields the following result.
Lemma 1: Assume system dynamics (1) is controlled to

follow a constant reference signal with an LQG-i controller
using output (4) that is prone to constant faults. Then for
A,∆ matrices from the augmented system (9) and Wt−1

from (12), the following limit holds true:

lim
t→+∞

CWt−1 =
[
− 1

sIny
: · · · : − 1

sIny
: Iny

]
,

where C :=
[
C : Onx

: Ony

]
, C = 1

s

∑s
k=1 Ck and the

right hand-side matrix is of order ny × (s+ 1)ny .
Another useful expression comes from second moment dy-
namics.
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Lemma 2: Let M by any (2nx+ny)×(2nx+ny) matrix.
Then E[XT

t MXt] attains an M-parametrized expression that
outlines its dependency on vector D.

E[XT
t MXt] = ϑt + θTt D+ DT Θt D, (13)

where

ϑt := ET [X0](A
T )tMAtE[X0]+

E
[ t−1∑
l=0

NT
l B

T (AT )t−1−lMAt−1−lBNl

]
,

θTt := 2ET [X0](A
T )tMWt−1,

Θt := WT
t−1MWt−1.

Both Lemma’s outline the basic statistical behavior of
quantities of interest and will play a vital role in establishing
the main analytic result of this work, in the section to follow.

IV. SUPERVISORY DIAGNOSTIC MODULE

In this section, we elaborate on how the RL-agent per-
ceives the situation (observation-space), acts on the con-
trolled system (action-space) and the task that it aims to
accomplish.

At the beginning of each learning episode, the agent starts
in an initial state, that is a function of X, the controlled-
systems augmented state2. At each time-step, the RL-agent
receives an observation (e.g. from the diagnostic module)
and executes an action (e.g. by adding a term to the sensor
measurement) according to its policy, a mapping from the
observation to action, (possibly a smooth parametrized func-
tion such as a Neural Network). Upon the execution of the
action, the system transitions to a successor state, and the
agent receives an instantaneous cost ct. The cost defines the
task at hand.

The agent’s policy, the stochasticity in the environment,
and the observation model induce a probability distribution
over the sequence of states and actions taken by the agent,
what constitutes RL agent’s trajectory, τ . The probability
distribution of τ following the agent’s policy π in a given
environment and sensing model is denoted by ρπ . An RL
agent aims to find a policy, to minimize the system’s cost
measure over a given horizon, denoted by T . In classical RL
[17], the desired cost measure of the system is usually an
expectation of some long-run objective. A common example
of such objective in RL literature is expected (undiscounted)
cumulative cost, i.e.,

J(π) := Eτ∼ρπ

[
C(τ)

]
, (14)

where C=
∑T−1

t=0 ct is the cumulative cost over an episode,
and the expectation is taken over the policy’s trajectory
distribution ρπ . Once the agent is trained, it can be deployed
to run simultaneously in parallel with the controlled system.

2Therefore RL state should not be confused with the state of the closed-
loop system.

Feature Extraction: In our case-study, we use three
types of input signals from the low-level system at each
time-step as the set of observations to the RL algorithm.
The observation space of the RL algorithm consists of the
low-level control signal u, the state estimate x̂, and sensor
residuals, i.e., y(k) − Ck x̂.

Action Space: The way the RL agent applies its actions
on the low-level controller is through additive intervention
on the sensing module as it is illustrated in Figure 1. The
formal expression on RL’s integration into system dynamics
is the following modification of (3):

yt = Ck xt + η
(k)
t + ϕ

(k)
t + a

(k)
t , k = 1, . . . , s, (15)

with the restriction of a
(k)
t ∈ A ⊂ R, ∀k, t. Here A is a

compact subset of R modeling the range of feasible faults
that can appear on the sensors. In other words, the RL agent,
by design, intervenes in the sensor module, with a set of ac-
tions spanning the set of sensors. Beyond that, and following
the minimal intervention constraint to the closed-loop plant
dynamics, the agent has no information about the location
and magnitude of the fault, nor the low-level controller action
on output and state. The RL agent’s objective is to apply an
action at each time step that blocks the injection of faults into
the system, i.e. αt ≡ −ϕt where α = [a(1), . . . , a(k)]T and
ϕ = [ϕ(1), . . . , ϕ(k)]T are the stacked Rny -valued vectors of
actions and faults, respectively.

RL algorithm: We used a Deep Deterministic Policy
Gradient (DDPG) RL algorithm [18] which can be applied
to continuous action-spaces, e.g. our case-study, and yields a
deterministic policy. We show that the proposed architecture
and methodology can be applied with satisfactory results
without the need to extensively search in the space of
available algorithms or possible hyper-parameters.

V. COST DESIGN PRINCIPLES: FAULTS MITIGATION

The design of the cost function described in (14) for
online security is considered as the main contribution of this
work. Given low-level system dynamics, sensor module and
diagnostic tasks, we will elaborate on the necessary design
principles that (14) must follow to achieve cooperation
between the control hierarchies. By taking the tracking error
at each time-step as the instantaneous cost, the RL agent will
try to learn a mapping from the observations to actions, a
policy, that minimizes (14) for the choice of ct=∥Cxt−rt∥2.
Our objective is to deploy an RL policy such that C xt will
track rt. This may turn out to be a challenging task due to
the action of low-level servomechanism. The latter module
always imposes tracking of rt from the output yt. In the
presence of faults, this means that servo-mechanism will
displace Cxt if necessary, essentially steering the system
state to the undesirable range of values. One way for RL
to mitigate this effect is to learn a policy that will minimize:

CM (τ) =

T−1∑
t=0

∥C xt − rt∥2,

in the sense of (14). We define ct := ∥C xt−rt∥2 as mitiga-
tion cost function term because the policy that RL agent is
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set to learn achieves cancellation of fault without necessarily
identifying, where the error comes from, i.e., which sensor
is at fault. The following result outlines this property by
examining the policy that minimizes long-term cost, i.e.,
limt→+∞ E[ct]. To highlight the effectiveness of CM and
facilitate further analysis the following result assumes that
reference signal, faults and actions are time-invariant.

Theorem 1: Consider the closed-loop system dynamics
(9) with RL agent acting on output observables according
to (15). Assume that reference signal is rt ≡ r ∈ Rny i.e.
constant, and that faults ϕ(k)

t ≡ ϕ(k) ∈ Rny are also constant,
yet arbitrary. Then on the space of time-invariant actions
implemented by the RL agent, it holds that

lim
t→+∞

E
[
ct
]
= θ∞ + (ϕ+ α)T

( 1

s2
Js ⊗ Iny

)
(ϕ+ α),

where Js, s ≥ 1 is the s×s matrix of ones and ϕ, α ∈ Rsny

are the group fault and action vectors, respectively. Moreover,
the steady-state minimization vector of limt E[ct] lies in

M =

{
α ∈ Rsny :

s∑
k=1

a(k) = −
s∑

k=1

ϕ(k)

}
.

A moment of reflection on Theorem 1, may reveal that
the constant fault and action hypotheses are only to simplify
analysis in view of linear underlying dynamics. The big
picture here is that RL agent trained towards policies that
minimize CM (τ) may be successful in handling a wide class
of faults. Our agent is greatly assisted by the fact that the
system is governed by exponentially stable linear dynamics.
Here a constant fault will shift the state vector to some
other set point and convergence will occur exponentially
fast. If fault duration is on a higher time scale than system
rate of convergence, Theorem 1 is a good approximation of
the policy the agent should seek while the fault lasts. It is
reasonable to conclude that CM is a good candidate reward
function for piece-wise constant or slowly time varying
faults, as we will document in §VI. The design principles
encapsulated in the form of CM are, from the designer’s
perspective both necessary and sufficient conditions for
optimality in the mean square sense. However, from the
RL agent’s perspective, they are only necessary conditions.
We approached the problem from the former point of view
explaining the steps to provide the RL agent with the best
possible reward functions within the existing plant-sensing
configuration. The conditions under which the RL agent will
converge to the desired policy regard the implemented RL
algorithms and fall beyond the scope of this work. We believe
however that majority of modern gradient-based algorithms
have high chances of converging to desired minima in the
space of M. Our belief is supported by extensive simulation
results.

The non-trivial step in the context we study was to identify
the sources of noise, that were not simply coming from
additive signals. The RL-agent is agnostic to low level
dynamics, and its actions can easily get competitive to the
low-level controller. From the mitigation reward function
CM we see that agent intervenes in sensor signal trying to

Fig. 2: The chemical process with four actuators (hot, cold pumps,
valve and heater) that control the level and temperature of tank 2
and level of tank 3. The state is over-observed by three similar
sensors.

stabilize state xt (so that C xt will track r) while LQG-i
controller aims to force y toward r. This is the reason that
several intuitively obvious choices of cost functions, such as
∥y−r∥ would not work because they would fail to decouple
the sources of the fault: the system induced as a result of
existing disturbance and the disturbance itself.

VI. NUMERICAL SIMULATION

We conceptualize our design and illustrate the effective-
ness of our approach by means of simulation. We consider a
chemical process shown in Figure 2 linearized along the lines
of [19]. The three states nx = 3 describe the level of water
in tanks 2 and 3 and the temperature of water in tank 2. The
control inputs is two flow pumps, one valve and one heater
(i.e. nu = 4), as illustrated in Figure 2. The actuator noise is
assumed zero-mean Gaussian with covariance ΓTΓ=0.05I3.
The low-controller objective is to regulate state vector around
a reference value that for simplicity was taken equal to
r = [1, 1, 1]T . The linearized system outlined in [19] is given
by

A=

 0.96 0 0
0.04 0.97 0
−0.04 0 0.90

 , B=

 8.8 −2.3 0 0
0.2 2.2 4.9 0

−0.21 −2.2 1.9 21

 .

The three-tank system is controlled by a LQG controller with
integral action. The scenarios we consider are: exact (single
sensor) observation, and redundant sensing with averaging
sensor fusion scheme. In either scenario, sensors are prone
to arbitrary random but constant faults and our goal is to
train the supervisory agent embedded as in Figure 1, so that
the controlled system will continue to regulate its output
around r. We assume admissible faults within [−18, 18]
and therefore constrain the action space of the agent to
A=[−20, 20]. We trained the agent over 2000 episodes and
500 time-steps per episode. The Neural Networks structure
and the hyper-parameters of the DDPG algorithm are left as
the default values in the simulation platform (here MATLAB
- Simulink).

A. Single-Sensor Measurements

Our explorations begin with one sensor that provides
system measurements. The RL agent intervenes with an
action signal at on the sensor that is prone to constant but
arbitrary faults. Figure 3 consists of three plots that illustrate
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Fig. 3: Figure(a) (left) plots the average system output over an episode averaged over multiple runs against the fault magnitude at the test
time; that is, the closer to the horizontal line y = 1, the better performance of the system. Figure(b) (middle) shows the system cumulative
tracking error in an episode averaged over multiple runs against magnitude of the fault at the test time. Figure(c) (right) shows the mean
action outputed by the RL agent over an episode averaged over multiple runs for different fault magnitudes. Note that the fault enters the
system at the start of the episode.
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Fig. 4: Figures(a) (left) shows the timed behavior the controlled system (without RL module) when a fault of magnitude 6 enters the
system at time t = 1000. Figure(b) (right) shows the behavior of the RL augmented system when a fault of magnitude 6 enters the system
at time t = 1000.

statistical performance over a broad range of fault realization
and their effect on the system with and without RL. We see
that RL action successfully mitigates the effect of fault on
the system state, allowing the low-level controller to stabilize
system dynamics around the reference signal. To highlight
the effectiveness of agent action, Figure 4 illustrates the
effect of a constant fault on the system without and with
the supervision of RL, on system dynamics. Here one single
fault occurs at the 1000th time-step. Next, we demonstrate
the effectiveness of RL agent’s training with exclusively
constant faults. Following the remarks below Theorem 1,
we illustrate that the agent is capable of handling cases of
dynamics faults. Figure 5 illustrates the results of dynamic
piece-wise constant faults that occur every 500 time-steps.
We conclude the single sensor measurement case by testing
the ability of the agent to respond to slowly varying periodic
faults. Figure 6 illustrates the results. Interestingly enough,
the agent is able to mitigate, to a large extent, the effect of
a non piece-wise constant time-varying disturbance.

B. Multi-Sensor Measurements

Here we consider an over-observed system with s = 3
sensors with Ck ≡ I3 and measurement noise NT

k Nk ≡
0.01I3 for k = 1, 2, 3. Due to space constraints, we limit
this scenario to a mere illustration of Theorem 1. Figure 7

showcases the onset of fault on sensor 3. Figure 7(a) explains
that the RL agent reaction to fault is the some of actions
applied in all three sensors, exactly along the lines of space
M, defined in Theorem 1.

VII. CONCLUSION AND FUTURE WORKS

We explored a bi-level non-intrusive design to add the
fault-tolerance capability to an existing controlled system,
using an intelligent supervisory entity to take appropriate
action to detect, identify, track and mitigate possible sen-
sor faults while the controlled system is in operation. We
approached the problem from the engineering perspective
and presented model-based principles to design effective
cost functions for the RL algorithm. Given a diagnostic
task, controlled system dynamics and sensor fusion schemes
can help us design cost functions with desired properties.
We demonstrated the efficacy of such a design through
a case-study on a chemical process with an underlying
servo mechanism in the presence of sensor faults in single
or multi-sensor configurations. Our contribution highlights
the effectiveness of hybrid methods where Reinforcement
Learning and data-driven methods are combined with model-
based classic control theoretic approaches to yield improved
adaptivity, robustness, and performance. We conjecture that
our method will generalize to non-linear dynamics. We leave
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Fig. 5: Figures(a) (left) shows the timed behavior the controlled system (without RL module) when a piecewise fault with random
magnitudes and jumps at every 50 time steps enters the system. Figure(b) (middle) shows the behavior of the RL augmented system when
such fault is present. Figure(c) (right) shows the behaviour of the RL agent under such fault.
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Fig. 6: Figures(a) (left) shows the timed behavior the controlled system (without RL module) when a sinusoidal fault with frequency of
0.01 rad and an amplitude of 2 enters the system. Figure(b) (middle) shows the behavior of the RL augmented system when such fault is
present. Figure(c) (right) shows the behaviour of the RL agent under such fault. It is still not clear why agent is not able to completely
cancel the oscillating effect of fault. It is speculated that remaining oscillation is due to slight lag in the action of behalf of agent.
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Fig. 7: Dynamic, piecewise-constant faults entering sensor 3, in an over-observed system. The actions of the RL-agent remove the fault
in the average of the sensor measurements that is fed back to the controller. There are infinitely many sets of actions that would sum
up to cancel the fault and the RL-agent would end up in a minima depending on the initial condition and the learning dynamics of the
algorithm.

the validation of our design for such non-linear systems for
future work. Lastly, we will also explore the space of possible
unknown faults such as actuator or system disturbances of
either additive or multiplicative nature.

APPENDIX

Proof: [of Lemma 1] A successful synthesis of an LQG-
i controller for the low-level system, implies that matrix A
is Hurwitz. Then, the asymptotic behavior of E[yt] satisfies

lim
t→+∞

E[yt] = lim
t→+∞

CWt−1D,

where we note that the limit of Wt exists. On the other hand,
the asymptotic tracking of constant reference r implies

lim
t→+∞

E[yt] = C lim
t→+∞

E[xt] +
1

s

s∑
k=1

ϕ(k)

= C lim
t→+∞

Wt−1D+
1

s

s∑
k=1

ϕ(k) = r
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If we solve for C limt→+∞ Wt−1D we obtain

C lim
t→+∞

Wt−1D = r − 1

s

s∑
k=1

ϕ(k)

=
[
− 1

sI : − 1
sI : · · · : − 1

sI : I
]
D.

In view of D being constant but arbitrary vector, the proof
is concluded.

Proof: [of Lemma 2] This is a result of straightforward
algebra. The steps are omitted due to space limitations.

Proof: [of Theorem 1] We work as follows:

E
[
∥C xt − r∥2

]
= E

[
∥CXt − r∥2

]
= E

[
∥CXt∥2

]
− 2rTCE[Xt] + ∥r∥2

of matrix C = [C : Onx
: Ony

] that has the project
property : CXt = xt, ∀ t. Then

E
[
∥Cxt − r∥2

]
= E

[
XT

t CTCXt

]
− 2rTCE[Xt] + ∥r∥2

The term E
[
XT

t C
TCXt

]
is (13) with M = CTC. From

Lemma 2 we have that

E
[
∥C xt−r∥2

]
= ϑt+θTt D+DT Θt D−2rTCE[Xt]+∥r∥2,

for ϑt, θt and Θt evaluated at M = CTC. Expanding E[Xt]
according to (11)

E
[
∥C xt − r∥2

]
= ϑt − 2rTCAtE[X0] + ∥r∥2 + · · ·
· · ·+

(
θTt − 2rTCWt−1

)
D+ DTΘtD

Since limt→+∞ ct = limt→+∞ E
[
∥C xt − r∥2

]
, we have

lim
t→+∞

E
[
∥C xt − r∥2

]
= ϑ∞ + ∥r∥2 − 2rTCW∞D+ . . .

· · ·+ DT Θ∞ D

where CW∞ := C limt→+∞ Wt and from Hurwitz prop-
erty of A, ϑ∞ := limt→+∞ ϑt and Θ∞ := limt→+∞ Θt

exist while limt→+∞ θt = 0. Furthermore, from Lemma 1

CW∞ =
[
− 1

sIny
: · · · : − 1

sIny
: Iny

]
=: [Wφr : Iny

]

Θ∞ =

[
1
s2 Js ⊗ Iny

− 1
s1s ⊗ Iny

− 1
s1

T
s ⊗ Iny Iny

]
=:

[
Wφφ Wφr

WT
φr Iny

]
The sub-matrices W·,· act on sub-vectors of D =

[
φ
r

]
,

φ := ϕ + α, are subscripted in a self-explanatory manner.
Expanding on φ and gathering all terms together we get

lim
t→+∞

E
[
∥Cxt − r∥2

]
=ϑ∞ + ∥r∥2 − 2rTWφrφ− · · ·

· · · − 2∥r∥2φTWφφφ+ · · ·
· · ·+ 2rTWφrϕ+ ∥r∥2

=ϑ∞ + φT Wφφ φ.
(16)

Matrix Wφφ is positive semi-definite sny × sny matrix of
rank 3. The 3 nonzero eigenvalues are identical and equal to
2/s2. Combine (16) with the form of Wφφ to conclude for
the form of M.
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[12] Y. Sohège, G. Provan, M. Quinones-Grueiro, and G. Biswas, “Deep
reinforcement learning and randomized blending for control under
novel disturbances,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 8175–
8180, 2020.

[13] A. Meystel, “Intelligent control,” in Encyclopedia of Physical Science
and Technology (Third Edition), third edition ed., R. A., Ed. New
York: Academic Press, 2003, pp. 1–24.

[14] E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Mod-
eling, detection, and disambiguation of sensor faults for aerospace
applications,” IEEE Sensors Journal, vol. 9, no. 12, pp. 1907–1917,
2009.

[15] D. Adamy, EW 102: A Second Course in Electronic Warfare, ser.
Artech House radar library. Artech House, 2004.

[16] P. C. Young and J. Willems, “An approach to the linear multivariable
servomechanism problem,” International journal of control, vol. 15,
no. 5, pp. 961–979, 1972.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2016.

[19] J. Milošević, H. Sandberg, and K. H. Johansson, “Estimating the
impact of cyber-attack strategies for stochastic networked control
systems,” IEEE Transactions on Control of Network Systems, vol. 7,
no. 2, pp. 747–757, 2019.

345


