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Abstract— AI-enabled mechanisms are deployed to guard
controlled systems against sensor anomalies. We explore a
two-level architecture design in which a low-level feedback
controller of a linear system uses measurements from one
or more potentially unreliable sensors. These observations are
prone both to sensor noise but unknown additive faults. Our
proposed, high-level, guard mechanism consists of a Reinforce-
ment Learning (RL) agent that monitors available vitals of the
system. In the event of a fault on the sensor components, the
RL agent automatically detects, estimates the fault, localizes
and takes action to cancel the fault. In addition, we develop
design methodologies for efficient training of the RL agent
that take advantage of system dynamics and sensor fusion
schemes. We show that the associated training cost functions
can be designed so that their optimal policy achieves efficient
of arbitrary constant or piece-wise constant sensor faults.
To illustrate our theoretical results, we consider a linearized
version of a chemical process with multiple sensors, controlled
by a Linear Quadratic Gaussian (LQG) Servo-Controller with
Integral Action. Our simulations show that the RL-agent is
successful in localizing the faulty sensors and mitigating the
effects of faults in an online fashion.

I. INTRODUCTION

The smart revolution with developments in smart grid,
smart building, smart transportation systems, etc, in con-
junction with so called “network society” and proliferation
of Internet of Things (IoT) devices, have made the resilience
and security of Cyber Physical Systems a paramount priority
[1], [2]. Such complex systems are prone to multiple fault
scenarios, e.g. system/process fault, actuator fault, controller
fault, cyber attacks, sensor faults, etc. We focus our attention
on abnormalities in the sensing aperture of the system. The
complex and interconnected nature of the today’s Cyber
Physical Systems allow for escalation and propagation of
small faults in subsystems. Thus, the ability to quickly detect,
isolate (localize), mitigate (accommodate), and characterize
faults in a system have become synonymous to trustworthi-
ness, reliability, and resilience.

Accounting for all possible failure scenarios at the design
stage is a complex and in times impractical, if not impossible,
task, and typically leads to conservative designs, e.g. H2 and
H∞. Thus, designing Fault Tolerant (FT) systems that allow
for mission continuation in the case of unexpected failures
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are of importance for designing resilient and trustworthy
systems. The complexity of the problem has led to a taxon-
omy of the types of faults and attacks [3] and development
of approaches restricted to particular type of systems and
abnormalities with low generalizability over the CPS systems
or abnormalities.

Model-based diagnostics is a well-established research [1],
[4], [5]. Fault Tolerant Control (FTC) [6], [7] concerns the
use of model-based approaches in the design of control sys-
tems. The traditional FTC methods rely on prior knowledge
of the abnormalities and their effects on the system, i.e.,
known system dynamics and faults. The performance of such
model-based approaches are limited by model inaccuracies
and are sensitive to model misspecifications. The traditional
design is typically composed of a fault detection module
which switches to a low-level controller appropriate for that
specific fault from a set of predefined fault controllers. The
sequential nature of such design introduces a time-delay into
the system which might de-stabilize the system.

To mitigate the delay introduced by the traditional FTC
design, Blended Control (BC) proposes a hierarchical design
with a weighted combination of low-level controllers. A
deep-learning BC design [8] uses an RL algorithm to set the
blending weights, to provide a data-driven approach to BC,
which in turn eliminates the need for prior knowledge of the
system dynamics. In such architecture, the high-level control
effectively implements the low-level controller and does not
directly interact with the controlled system. However, BC
designs are intrusive in the sense that they aim to synthesize
a fault-tolerant controller. BC designs are not capable of fault
localization.

This work is an outgrowth of [9], from which we draw
results freely to keep this work self-contained. Our emphasis
in [9] was to design RL agents for simple fault detection
and mitigation strategies. In [9], we proposed an augmented
feedback-loop to a controlled system that change the input
to the low-level controller based on the input-output of the
low level system in order to help the controlled system to
continue its mission in the presence of sensor faults.

This paper focuses on the problem of mitigation and
localization in an over-observed system with unreliable sen-
sors. Our working hypothesis is that one or more sensors
may undergo a fault event and subsequently affect the plant
dynamics. It is desirable for the agent not only to be able to
mitigate the fault but also to detect which sensor(s) are the
ones that infuse the fault in the system.
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Fig. 1: The bi-level architecture. The agent takes action to defend the closed-loop plant against sensor faults. The input information arrives
from the sensor fusion out of a collection of heterogeneous sensors into some output signal y that is fed into the low-level controller. The
supervisory agent is exposed to the output of the sensor and acts on each sensor separately.

II. CONTROL SYSTEMS FRAMEWORK

We begin with laying the groundwork for our analysis.
The plant components to be considered are: a discrete time
linear control system in presence of stochastic process noise,
assumed Gaussian - with known statistics; an ensemble of
sensors that measure system state, and a Kalman state-
estimator. Furthermore, a low-level controller regulates the
system around a reference vector.

A. State Equation

In particular, for t ∈ N0 we assume the linear time
invariant update law

xt+1 = Axt +B ut + Γ ξt, (1)

where x ∈ Rnx is the state vector, A ∈ Rnx×nx is the state
matrix, u ∈ Rnu is the control signal, B ∈ Rnx×nu is the
input matrix, ξt ∈ Rnξ is a noise vector of Gaussian white
noise, and Γ ∈ Rnx×nξ is the diffusion matrix associated
with the process noise.

B. Sensing Component

To address the isolation problem, our assumption is that
state x in (1) is observed at every instant from more than one
sensors, independently. There are s>1 sensors each of which
with their own inaccuracy modelled via additive dynamic
signals, of Gaussian type with given statistics. We consider
s>1 sensors, so that kth sensor delivers

y
(k)
t = Ck xt +Nk η

(k)
t , k = 1, . . . , s.

Here Ck ∈ Rny×nx is the output sensor matrix and η
(k)
t ∈

Rnη the white noise vector with Nk ∈ Rny×nη the associated
diffusion matrix.

1) Fault Model: Our working hypothesis is that sensors
are vulnerable to faults. They modeled as time-dependent
additive bias. Sensor biases can occur due to incorrect
calibration, physical changes in the sensor system or it can
be the result of types of jamming attacks [10], [11]. With
this in mind, the kth potentially biased sensor’s output is:

y
(k)
t = Ck xt +Nk η

(k)
t + ϕ

(k)
t , k = 1, . . . , s. (2)

Here, vector ϕk
t ∈ Rny is the disturbance that models bias.

2) Sensor Fusion: Over-observed systems are an example
of multi-sensing configurations addressed in e.g. robotic
[12], or industrial applications [13], where redundancy of
estimators is necessary for ensuring acceptable accuracy
of measurement that will prevent system instabilities or
cascading failures . It is also typical that a fusion scheme
smooths out raw sensor measurements before further use.
The scheme to be considered in this work is the direct
average of s sensors’ outputs, i.e.:

yt =
1

s

s∑
k=1

[
Ck xt +Nk n

(k)
t + ϕ

(k)
t

]
,

= Cxt +
1

s

s∑
k=1

[
Nk n

(k)
t + ϕ

(k)
t

]
,

(3)

where C ∈ Rny×nx is the cumulative output matrix of xt.
Provided C preserves necessary observability, the rationale
behind selecting (3) as the input signal is that through this
observation redundancy, the effect of sensor noise is averaged
out [12]. It is remarked that multiple sensors and the fusion
scheme we consider are, from a system theory point of view,
an extension of single sensor measurements.

C. State Estimator
We use the standard Kalman estimator, with dynamics

xt+1|t = Axt|t−1 +B ut + L (yt − C xt|t−1), (4)
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where xt+1|t =: x̂t+1 ∈ Rnx is the prediction at time t+ 1
and L ∈ Rnx×nx is the Kalman gain. The filter output is

xt|t = (Inx
−MC)xt|t−1 +Myt, (5)

where Inx
is the nx × nx identity matrix, and M is the

innovation gain.

D. Controller

Assuming controllability and observability of (1), and that
we have information about the process and sensor noise
statistics, we can design a linear Quadratic Gaussian Servo
Controller with Integral Action [14]. The result is that output
yt asymptotically tracks reference signal rt also in the sense
of mean value. The integrator dynamics are:

x
(i)
t+1 = x

(i)
t + (rt − yt) (6)

where rt ∈ Rny is the reference signal. The control law reads

ut = −
[
Kx̂ Kx(i)

] [
xt|t

x
(i)
t

]
(7)

for matrices Kx̂ and Kx(i) that minimize some quadratic cost
functional J . In the event of a sensor anomaly, controller’s
effect on plant will be to keep measured output on track, at
the expense of the actual state. The latter gets diverged to
an uncontrollable, perhaps dangerous range of values. This
is illustrated in Figure 2 of §V.

III. HIGH-LEVEL DIAGNOSTIC MODULE

In this section, we elaborate on how the RL-agent per-
ceives the situation (observation-space), acts on the con-
trolled system (action-space) and the task that it aims to
accomplish. We design a cost function to achieve this task.

At the beginning of each learning episode, the agent starts
in an initial state, that is a function of X, the controlled-
system’s augmented state1. At each time-step, the RL-agent
receives an observation (e.g. from the diagnostic module)
and executes an action (e.g. by adding a term to the sensor
measurement) according to its policy. Upon the execution of
the action, the system transitions to a successor state, and the
agent receives an instantaneous cost ct. The cost defines the
task at hand. The RL agent aims to find a policy to minimize
the expectation of the system’s cumulative cost over a given
horizon, denoted by T , that is,

J (π) := E
[
C(τ)

]
, (8)

where C=
∑T−1

t=0 ct is the cumulative cost over an episode,
and the expectation is taken over the system’s trajectory.
Once the agent is trained, it can be deployed to run simul-
taneously in parallel with the controlled system.

Feature Extraction: In our case-study, we use three
types of input signals from the low-level system at each
time-step as the set of observations to the RL algorithm.
The observation space of the RL algorithm consists of the
low-level control signal u, the state estimate x̂, and sensor
residuals, i.e., y(k) − Ck x̂.

1Therefore RL state should not be confused with the state x of the system.

Action Space: The way the RL agent applies its actions
on the low-level controller is through additive intervention
on the sensing module as shown in Figure 1. The formal
expression on RL’s integration into system dynamics is the
following modification of (2):

yt = Ck xt + η
(k)
t + ϕ

(k)
t + α

(k)
t , k = 1, . . . , s, (9)

with the restriction of α
(k)
t ∈ A ⊂ R, ∀k, t. Here A is a

compact subset of R modeling the range of feasible faults
that can appear on the sensors. In other words, the RL agent,
by design, intervenes in the sensor module, with a set of
actions spanning the set of sensors. Following the minimal
intervention constraint to the closed-loop plant dynamics, the
agent has no information about the location and magnitude
of the fault, nor the low-level controller action on output and
state. The RL agent aims to apply an action at each time step
that blocks the injection of faults into the system, i.e. αt ≡
−ϕt where α = [α(1), . . . , α(s)]T and ϕ = [ϕ(1), . . . , ϕ(s)]T

are the stacked vectors of actions and faults, respectively.
RL algorithm: We chose to use a Deep Deterministic

Policy Gradient (DDPG) RL algorithm [15]. Other RL algo-
rithms that can be applied to continuous action-spaces, e.g.
our case-study, could potentially be used as an alternative to
DDPG here. Our results show that the proposed architecture
can be applied with satisfactory results, and without the need
to extensively search in the space of available algorithms or
hyper-parameters.

IV. REWARD FUNCTION DESIGN PRINCIPLES

Reward function for the training phase of agents are
crucial for their performance. The design principles of cost
(8) within the context of control systems, and the bi-level
architecture proposed, are the main contribution of this work.
We propose two different types of cost functions and explains
the diagnostic objectives they achieve.

A. Conditions for Fault Mitigation

By taking the tracking error at each time-step as the
instantaneous cost, the RL agent will try to learn a mapping
from the observations to actions, a policy, that minimizes
(8) for the choice of ct=∥Cxt − rt∥2. Non-trivial RL action
signals that monitor and safeguard plant against faults, but
do not intervene in the interior system dynamics may turn
out to be a challenging task due to the action of low-level
controller. The latter module always imposes tracking of rt
from the output yt. One way for RL to mitigate this effect
is to learn a policy that will minimize:

CM (τ) =

T−1∑
t=0

∥C xt − rt∥2,

in the sense of (8). We define ct:=∥C xt−rt∥2 as mitigation
cost function term because the policy that RL agent achieves
cancellation of fault without necessarily identifying, where
the error comes from, i.e., which sensor is at fault. The
following result outlines this property by examining the
policy that minimizes long-term cost, i.e., limt E[ct].
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Theorem 1: Consider the closed-loop system dynamics
(1) - (7) with RL agent acting on output observables accord-
ing to (9). Assume that reference signal is rt ≡ r ∈ Rny

i.e. constant, and that faults ϕ
(k)
t ≡ ϕ(k) ∈ Rny are also

constant, yet arbitrary. Then on the space of time-invariant
actions implemented by the RL agent, it holds that

lim
t→∞

E
[
ct
]
= θ∞ + (ϕ+ α)T

(
1

s2
Js ⊗ Iny

)
(ϕ+ α),

where Js is the s × s matrix of ones and ϕ, α ∈ Rsny are
the group fault and action vectors, respectively. Moreover,
the steady-state minimization vector of limt E[ct] lies in

M =

{
α ∈ Rsny :

∑
k

α(k) = −
∑
k

ϕ(k)

}
.

Further discussion of mitigation strategies is held in [9].

B. Conditions for Mitigation & Localization

As Theorem 1 explains successful minimization of miti-
gation cost function will result in cancelling the sensor faults
in the system, however one can say very little about where
these faults come from. The problem of localization, that
is for the RL agent to label the faults onto sensors would
require a modified cost function. Our idea is that the agent
can be trained to minimize

CML(τ) =

T−1∑
t=0

(
∥C xt − rt∥2 +

s∑
k=1

∥Fk y
(k)
t −Gk yt∥2

)
in the sense of (8). In this case, the instantaneous cost is

ct = ∥C xt − rt∥2 +
s∑

k=1

∥Fk y
(k)
t −Gk yt∥2. (10)

Matrices {Fk, Gk}sk=1 have dimensions ns × ny and will
be designed for a particular purpose: to decouple the fault
that comes from the closed-loop system and the fault that
enters through sensors. The fault occurring from the system’s
state xt is the result of faulty sensors that are already in the
loop. These dynamics are handled with the properties of the
mitigation cost term (this is the first term, RM , within CML).
The second term is summed over all the s sensors with their
companion matrices Fk and Gk chosen to satisfy

FkCk = GkC, k = 1, . . . , s. (11)

This condition tells us that the localization term effectively
cancels the signal coming from the system and compares
the rest of the sources, that is potential faults that are
newly injected into the system. The second result of this
work explains under what condition the steady-state constant
policy minimized the CML(τ) in the sense of (8). For the
exposition of Theorem 2 below, we introduce the matrix
D = [Dij ]ny×ny :

Dii = FT
i Fi −

1

s
(GT

i Fi + FT
i Gi

)
+

1

s2

s∑
k=1

GT
kGk,

Dij = −1

s
(FT

i Gi + FT
j Gj) +

1

s2

s∑
k=1

GT
kGk,

and the matrix

Xk =

[
− 1

s
G1N1−· · ·+(FkNk−

1

s
GkNk)−· · ·− 1

s
GsNs

]
.

Theorem 2: Consider the closed-loop system dynamics
(1) - (7) with the same set of assumptions as Theorem 1.
Let the matrices Fk and Gk satisfy the condition in Eq. (11)
for the CML cost. Then

lim
t→∞

E
[
ct
]
= σ∞ + (ϕ+ α)T

(
1

s2
Js ⊗ Iny

+D

)
(ϕ+ α)

where σ∞ = θ∞ +
∑s

k=1 Tr
[
XT

k Xk

]
. Moreover, if

1

s2
Js ⊗ Iny

+D > 0,

the steady-state minimization vector of limt E[ct] lies in

ML =

{
α ∈ Rsny : α(k) = −ϕ(k)

}
.

Note that matrices {Fk, Gk}k are agnostic to system dynam-
ics and relate only to the output matrices Ck of the sensor
module. The next corollary describes an elegant application
of condition (11).

Corollary 1: Assume that sensor module consists of s
identical sensors ( i.e. Ck = Ck′ ∀ k, k′ ). Then (11) holds
for Fk = Gk = Iny

and

lim
t→∞

E
[
ct
]
= σ∞ + (ϕ+ α)T

(( 1

s2
Js + L

)
⊗ Iny

)
(ϕ+ α)

where L is the laplacian matrix of a fully connected graph
of s nodes with edge weights 1/s. Furthermore,

(
1
s2 Js +L

)
is positive definite and the steady-state cost function has a
unique global minimum in ML.
The design principles discussed in this section seem re-
stricted to constant faults and actions. This hypothesis fa-
cilitated tractable analysis and closed-form expressions in
contrast to involved Dynamic Programming techniques that
RL typically relies on. However the method can be applicable
to more general faults and actions in plants where a well-
designed plant controller will bring the linear system to
steady-state behavior, faster than the duration or impulsive-
ness of a fault.

V. SIMULATION RESULTS

As an application to our approach we consider a level
and temperature control problem, addressed in industrial
systems [16]. Three tanks with liquid of different temperature
are connected with pipes. The objectives are to maintain a
constant liquid level and a constant temperature in the reactor
tank 2 and, thus, producing a constant product outflow. To
achieve this, hot and cold liquids are supplied by Tanks 1
and 3, respectively, while an extra heater device is installed in
Tank 2. The system states of interest are the level of water
in tanks 2 and 3, and the temperature of water in tank 2,
i.e. nx = 3. The control inputs is two flow pumps, one
valve and one heater (i.e. nu = 4). To fit with our current
framework, we consider a linearized version of the system
dynamics along the lines of [16], [17], we refer for more
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Fig. 2: The effect of LQG-i controller in the event of sensor
fault. Black horizontal line illustrates reference target. The low-
level controller is designed to regulate output around reference. In
the event of fault, like ϕ

(3)
t = 5 for t ≥ 250, system output y will

remain unchanged (left). On the contrary the system state will get
perturbed (right).

details. The actuator noise is assumed zero-mean Gaussian
with covariance ΓTΓ=0.05I3. The plant controller objective
is to regulate state vector around a reference value that for
simplicity was taken equal to r = [1, 1, 1]T . The linearized
system matrices are drawn from [17]. The three-tank system
is LQG controlled with integral action to regulate output
while optimizing some given cost functional J . Figure 2
illustrates plant response in the event of a sensor fault. At
time t = 250 a fault on sensor 3 is induced, with constant
magnitude. The fused sensor output remains unchanged, at
the expense of system state, In other words, controllers
of such type can tolerate sensor faults at the expense of
state of the system. We trained an RL agent with reward
functions for mitigation, CM and mitigation and isolation
CML, respectively. Training conducted by inducing constant
yet arbitrary faults with magnitude between -20 and 20, and
identified with the action range, i.e. A = [−20, 20]. It is
important to remark that all results presented in the section
are with agent took the constant fault training only.

A. Fault Mitigation

The first round of result is agent trained for mitigation,
and briefly discussed and mainly for illustrative purposes
and comparison with mitigation and localization results. We
used reward function CM to train agent for 1000 episodes.
We present a scenario where a constant fault is induced
at time t = 250 through sensor 3. Figure 3 demonstrates
the performance of supervisory agent trained to detect and
mitigate a fault. The implemented action is in line with
the desired policy according to Theorem 1. Exploration of
mitigation diagnostics is the purpose of [9].

B. Fault Mitigation & Isolation

A supervisory agent was trained to explore policies that
minimize CML. Our objective is to illustrate the effectiveness
of the reward function under essentially Corollary 1. Here,
we show a simple illustration of the effectiveness of training.
Our agent is able to apply what it has learned in a constant
fault applied at t = 250 on sensor 3. The simulation results
are illustrated in Figure 4. It is interesting to compare these
results with Figure 3. Unlike mitigation, actions α(2) and

240 242 244 246 248 250 252 254 256 258 260

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500

-4

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500

-20

-15

-10

-5

0

5

10

15

20

0 50 100 150 200 250 300 350 400 450 500

-10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 3: Mitigation. RL agent responses collectively to a fault
through sensor fault. The results illustrate Theorem 1, under which
agent’s policy is able to detect and correct the fault but not identify
its entry point.
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Fig. 4: Upper left: Timed behavior of state of plant without RL
module, when a fault of magnitude 5 enters the system at time
t = 250. Upper right: Behavior of the RL augmented plant, in the
event of same fault scenario. Lower left: RL agent’s policies over
time and its reaction to fault event. Lower right: Fault/action plot.

α(3), remain roughly indifferent. The last two simulation
results regard piece-wise constant and slowly time varying
fonts. We explore the effectiveness of our supervisory agent
that was trained with constant faults only and see that despite
its simple training, the agent conducts successfully mitigation
and localizing piece-wise constant faults, as shown in Figure
5 but also exhibits remarkable success in dealing with
sinusoidal signal fault applied on sensor 3, as shown in
Figure 6. Despite the fact that general time-varying fault
signals are beyond Theorem 2 and Corollary 1, CML delivers
satisfactory results, by tracking the injected fault.
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Fig. 5: Upper left: Timed behavior the controlled system without
RL module when a piece-wise fault with random magnitudes, and
jumps at every 50 time steps enters the system. Upper right: The
corrective effect of RL under same effect. Lower left: The behavior
of the RL. Lower right: Fault/action plot.
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Fig. 6: Upper left: Timed behavior the controlled system without
RL module when ϕ

(3)
t = 5+sin(0.01 · t) enters the system. Upper

right: The corrective effect of RL under same effect. Lower left:
The behavior of the RL. Lower right: Fault/action plot.

VI. CONCLUDING REMARKS

We presented a method to design and implement AI-based
techniques for non-intrusive online sensor anomaly detection,
mitigation and isolation for class of linear control systems.
Our method suggest that RL monitoring can deliver interest-
ing results with minimal intervention, explicit information on
plant dynamics and anything but involved training recipes.
In our future work, we will extend our framework to non-
linear systems and general adversarial attacks on the sensor
modules.
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