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I. INTRODUCTION

Speech is one of the most private forms of communi-

cation. People do not like to be eavesdropped on. They

will frequently even object to being recorded; in fact

in many places it is illegal to record people speaking in

public, even when it is acceptable to capture their images

on video [1]. Yet, when a person uses a speech-based

service such as a voice authentication system or a speech

recognition service, they must grant the service complete

access to their voice recordings. This exposes the user to

abuse, with security, privacy and economic implications.

For instance, the service could extract information such

as gender, ethnicity, and even the emotional state of

the user from the recording – factors not intended to

be exposed by the user – and use them for undesired

purposes. The recordings may be edited to create fake

recordings that the user never spoke, or to impersonate

them for other services. Even derivatives from the voice

are risky to expose. E.g. a voice-authentication service

could make unauthorized use of the models or voice

prints it has for users to try to identify their presence

in other media such as YouTube.

Privacy concerns also arise in other situations. For

instance, a doctor cannot just transmit a dictated medical

record to a generic voice-recognition service for fear

of violating HIPAA requirements; the service provider

requires various clearances first. Surveillance agencies

must have access to all recordings by all callers on a

telephone line, just to determine if a specific person of

interest has spoken over that line. Thus, in searching for

Jack Terrorist, they also end up being able to listen to

and thereby violate the privacy of John and Jane Doe.

The need to protect the privacy of users and their data

is well recognized in other domains [2]. Any private

information that can be gleaned by inspecting a user’s

interaction with a system must be protected from prying

eyes. To this end, techniques have been proposed in

the literature for protecting user privacy in a variety of

applications including e-voting, information retrieval and

biometrics. Yet, the privacy of voice has not been ad-

dressed until recently, and the issue of privacy of speech

has been dealt with primarily as a policy problem [3],

[4], and not as a technology challenge. In this article,

we describe recent developments in privacy-preserving

frameworks for voice processing. Here, we refer chiefly

to secure pattern-matching applications of speech such

as speech biometrics and speech recognition, rather than

secure speech communication techniques, which have

already been studied [5].

The goal of the described frameworks is to enable

voice-processing tasks in a manner which ensures that

no party, including the user, the system, or a snooper,

can derive undesired or unintended information from the

transaction. This would imply, for instance, that a user

may enroll at a voice-authentication system without fear

that an intruder or even the system itself could capture

and abuse his voice or statistical models derived from it.

A surveillance agency could now determine if a crime

suspect is on a telephone line, but would learn nothing

if the speaker is an innocent person. Private speech data

may be mined by third parties without exposing the

recordings.

These frameworks follow two distinct paradigms. In

the first paradigm [6], [7], [8], [9], [10], which we

will refer to as the “cryptographic” paradigm, conven-

tional voice-processing algorithms are rendered secure

by computing them through secure operations. By re-

casting the computations as a pipeline of “primitives”,

each of which can be computed securely through a

combination of homomorphic encryption [11], [12], [13],

[14], secure multiparty computation (SMC) [15] and

oblivious transfer [16], [17], we ensure that no undesired

information is leaked by any party. In this paradigm,

the accuracy of the basic voice-processing algorithm can

remain essentially unchanged with respect to the original

non-private version. The privacy requirements, however,

introduce a computational and communication overhead

as the computation requires user participation.

The second paradigm modifies voice-pattern classi-

fication tasks into a string-comparison operation [18],

[10]. Using a combination of appropriate data representa-

tion followed by locality sensitive hashing schemes both

the data to be matched and the patterns they must match

are converted to collections of bit strings, and pattern

classification is performed by counting exact matches.

The computational overhead of this string-comparison

framework is minimal compared to the cryptographic

framework. Moreover, the entire setup is non-interactive

and secure, in the sense that no party learns anything
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undesired regardless of how they manipulate the data.

This comes at the price of a slight loss of performance,

since the modified classification mechanism is not as

effective as conventional classification schemes.

In the rest of this paper, we first present a brief primer

on speech in Section II and discuss its privacy issues

in Section III. We describe the cryptographic approach

in Section IV and the string-comparison approach in

Section V. Finally in Section VI we present our con-

clusions. In our discussion, we will assume a user who

possesses voice data and a system who must process

it. This nomenclature may not always be appropriate;

nevertheless we will retain it for consistency.

II. A BRIEF PRIMER ON SPEECH PROCESSING

The speech processing applications we consider all

deal with making inferences about the information in

the recorded signal. Biometric applications attempt to

determine or confirm the identity of the speaker of

a recording. Recognition applications attempt to infer

what was spoken in the recording. We present below

a very brief description of the salient aspects of these

applications as they pertain to this paper. The description

is not intended to be exhaustive; for more detailed

information we refer readers to the various books and

papers on the topics, e.g. [19].

In all cases, the problem of inference is treated as

one of statistical pattern classification. Classification is

usually performed through a Bayes classifier. Let C be

a set of candidate classes that a recording X might

belong to. Let P (X|C) be the probability distribution of

speech recordings X from class C. P (X|C) is usually

represented through a parametric model, i.e. P (X|C) ≈
P (X;λC) where λC are the parameters of the class C

and are learned from data. Classification is performed as

Ĉ = arg max
C∈C

log P (X;λC) + log P (C) (1)

where P (C) represents the a priori bias for class C.

Stated thus, the primary difference among the applica-

tions considered lies in the definition of the candidate

classes in C and the nature of the model P (X;λC).
Before proceeding, we note that the classifiers do

not work directly from the speech signal. Instead, the

signal is converted to a sequence of feature vectors,

typically “Mel-frequency cepstral coefficients” (MFCC)

[20]. To generate these, the signal is segmented into

overlapping “frames”, each typically 25ms wide, with

an overlap of 15ms between adjacent frames. From each

frame, a vector of MFCC (or similar) features is derived,

which may be further augmented with their temporal

differences and double-differences. For our purposes, it

suffices to know that when we refer to a speech recording

we actually refer to the sequence of feature vectors X =
[x1,x2, · · · ,xT ]. For the privacy-preserving frameworks

described later, we will assume that the user’s (client)

device can compute these features. The conversion of

signals to features by itself provides no privacy, since

they can be used for pattern classification, and can even

be inverted to generate intelligible speech signals [21].

A. Biometric Applications: Identification and Authenti-

cation

Biometric applications deal with determining the iden-

tity of the speaker. Here, the set C in (1) is the set of

candidate speakers who may have spoken in a record-

ing. In addition, a “universal” speaker U , representing

the aggregate of all speakers not otherwise in C is

included in the set. U may be viewed as the “none-

of-the-above” option – classifying a recording as U is

equivalent to stating that the speaker is unknown. In

speaker identification systems C comprises a collection

of speakers S (possibly including U ) for whom models

λS are available. In speaker authentication, C comprises

only the speaker who has claimed to have spoken in

the recording, and the universal speaker U . P (C) in (1)

now becomes a tuning parameter to bias the classification

towards specific speakers or U .

Typically, the individual feature vectors in any record-

ing X are assumed to be IID and distributed according

to a Gaussian mixture model (GMM) [22]. Thus, for any

speaker S in C, P (X; λS) is assumed to have the form

P (X; λS) =
∏

t P (xt;λS), where

P (xt; λS) =
K

∑

k=1

wS
kN (xt;µ

S
k ,ΣS

k ). (2)

Here K is total number of Gaussians in P (xt; λS), N ()
represents a Gaussian density, and wS

k , µS
k and ΣS

k are

the mixture weight, mean vector and covariance matrix

of the kth Gaussian in the mixture. The parameters of

the GMM are expressed as λS = {wS
k , µS

k , ΣS
k ∀ k =

1, . . . ,K}.

λU , the parameters of the GMM for “universal

speaker” U are learned from a large collection of speech

recordings from many speakers. λU is often called a

“Universal Background Model”, or UBM. The GMM

parameters λS for any speaker S are learned from a

collection of recordings for the speaker, using the EM

algorithm. When the amount of training data for the

speaker are limited, e.g. from enrollment recordings in

an authentication system, and insufficient to learn GMM
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parameters robustly, they are learned by adapting the pa-

rameters of the UBM to the data from the speaker using

an MAP estimation algorithm [23], [24]. Classification

of speakers with the GMMs now proceeds as

Ŝ = argmax
S∈C

T
∑

t=1

log P (xt;λS) + θS . (3)

where θS encodes our prior biases as mentioned earlier.

B. Recognition Applications

In speech recognition systems, C in (1) represents the

collection of all possible word sequences that a person

may say in the recording. Phrase spotting systems only

include the specific phrases of interest, along with a

background model, usually called a “garbage model” in

this context, which represents the “none of the above

option”. Isolated word recognition systems assume that

only a single word was spoken in the recorded segment

being analyzed; C here comprises the vocabulary of

words to recognize. In continuous speech recognition

(CSR) systems, C represents the set of all possible

sentences a person may speak. This set can be very large,

and even infinite in size. To make classification man-

ageable, the set of all possible sentences is represented

as a compact, loopy word graph, which conforms to a

grammar or n-gram language model that embodies the

a priori probabilities P (C) [19].

The probability distribution P (X; λC) for each class

C is usually modelled by a hidden Markov model

(HMM). The theory of HMMs is well known; we only

reiterate the salient aspects of it here [25], [19]. An

HMM is a model for time-varying processes and is

characterized by a set of states [s1, . . . , sM ] and an

associated set of probability distributions. According to

the model, the process transitions through the states

according to a Markov chain. After each transition it

draws an observation vector from a probability distri-

bution associated with its current state. The parameters

characterizing the HMM for any class C are i) the initial

state probabilities ΠC = {πC
i , i = 1, . . . ,M}, where

πC
i represents the probability that at the first instant the

process will be in state si; ii) transition probabilities

AC = {aC
i,j i = 1, . . . ,M, j = 1, . . . ,M} which

represent the probability that, given the process is in

state si at any time, it will jump to sj at the next

transition, and iii) the set of state output probability dis-

tributions {PC(xt; Λ
C
i )} associated with each state. In

speech recognition systems the PC(xt; Λ
C
i ) are generally

modeled as Gaussian mixture densities: PC(xt; Λ
C
i ) =

∑

k wC
i,kN (xt;µ

C
i,k, Σ

C
i,k). Thus the parameters for class

C are λC = {Πc,AC ,ΛC}, where ΛC = {ΛC
i ∀i =

1, . . . ,M} and ΛC
i = {wC

i,k, µC
i,k, ΣC

i,k ∀ k}.

To compute P (X;λC) for any class C, we must

employ the following recursion, commonly known as the

forward recursion. Here, the term αC(t, i) represents the

total probability that the process arrives at state i after t

transitions and generates the partial sequence x1, . . . , xt,

i.e., αC(t, i) = P (x1, . . . , xt, state(t) = i;λC).

αC(1, i) =πC
i PC(x1|i)

αC(t, i) =P (xt|i, C)
∑

j

αC(t − 1, j)aC
j,i ∀ t > 1

P (X; λC) =
∑

i

αC(T, i) (4)

where T is the total number of feature vectors in X.

P (X;λC) computed in the above manner considers

all possible state sequences that the process may have

followed to generate X. It can be used in (1) for

phrase spotting and isolated-word recognizers. In contin-

uous speech recognition, however, the classes are word

sequences, which are collapsed into a compact word

graph [26] and computing P (X|C) through (4) is not

feasible for individual word sequences. Here, P (X;λC)
is replaced by the probability of the most likely state

sequence though the HMM for C, and the classification

is performed as

Ĉ = argmax
C

log P (C) + max
s

log P (X, s; λC) (5)

where s is the state sequence followed by the process.

Unlike classification based on forward probabilities, this

estimation can be performed over the set of word se-

quences represented by a word graph: the word graph is

composed into a large HMM by replacing each edge in

the graph by the HMM for the word it represents [26].

The word sequence corresponding to the most probable

state sequence through the resulting HMM is guaranteed

to be identical to the one obtained by (5). Even in

contexts outside continuous speech recognition, (5) is

frequently used as a generic substitute for (1), since it is

more efficient to compute.

The term maxs log P (X, s|C) in turn can be com-

puted very efficiently using a dynamic programming

algorithm known as the Viterbi algorithm, which imple-

ments the following recursion. Here ΓC(t, i) represents

the log of the joint probability of x1 · · · xt and the most
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probable state sequence that arrives at state si at time t.

ΓC(1, i) = log πC
i + log P (x1; Λ

C
i )

δC(t, i) = argmax
j

ΓC(t − 1, j) + log aC
j,i ∀ t > 1

ΓC(t, i) = log P (xt; Λ
C
i ) + ΓC(t − 1, δC(t, i))

+ log aC
δC(t,i),i

max
s

log P (X, s|C) = max
i

ΓC(T, i) (6)

δC(t, i) is a table of “backpointers” from which the most

likely state sequence argmaxs log P (X, s; λC) can be

determined by tracing backwards recursively as sT =
argmaxi Γ

C(T, i), st = δC(t + 1, st+1), where st is the

tth state in optimal state sequence. In continuous speech

recognition systems, in particular, the backtraced optimal

state sequence traces a path through the word graph and

is used to determine the spoken word sequence.

III. PRIVACY ISSUES IN SPEECH PROCESSING

From the discussion of the previous section, the key

component of all the above applications is the compu-

tation of the class score log P (X;λC). In conventional

— non-private – implementations of these applications,

the system providing the application has access to data

X, which represents the user’s voice. This enables it to

manipulate or misuse the data, raising privacy concerns.

The alternative, i.e., permitting the user to access the

models λC , is equally unacceptable. In many situations,

the models are the system’s intellectual property. Fur-

thermore, in voice-data mining situations, the system’s

models also represent the patterns it is searching for;

revealing these to external parties may not be acceptable.

A voice-based authentication system where the user

himself has access to the models cannot be considered

an effective authenticator.

Thus, for maximally protecting the user and the sys-

tem from one another, the system must not learn the

user’s data X, while the user must not be able to infer

the system’s models λC . For the speech processing ap-

plications discussed above, this means that log probabil-

ity terms computed from GMMs, forward probabilities,

and best-state-sequence probabilities (also called Viterbi

scores) must all be computed without revealing X to

the system or λC to the user. An additional twist arises

in the case of authentication systems, where the system

must be prevented from making unauthorized use of the

models it has for the user. In this case, the model λS

must itself be in a form that can only useful when the

system engages with the appropriate user.

The above deals with the computation of scores for

any class. But what about the final outcome of the

classification? This, too, has an intended recipient. For

instance, in most biometric applications it is the system

that must receive the outcome of the classification; how-

ever for recognition systems the user obtains the result.

Thus we also stipulate that the outcome is only revealed

to the intended recipient. We refer to any computa-

tional mechanisms that enable the above requirements

as private computation, as opposed to conventional non-

private methods that make no guarantees to privacy. The

next two sections describe two frameworks that enable

such private processing.

IV. THE CRYPTOGRAPHIC APPROACH

The cryptographic approach treats private speech pro-

cessing as an instance of secure two-party computa-

tion [15]. Consider the case where two parties, Alice

and Bob have private data a and b respectively and they

want to compute the result of a function f(a, b). Any

computational protocol to calculate f(a, b) is said to

be secure only if it leaks no more information about a

and b than what either party can gain from learning the

result c. We assume a semi-honest model for the parties

where each party follows the protocol but could save

messages and intermediate results to learn more about

other’s private data. In other words, the parties are honest

but curious and will follow the agreed-upon protocol but

will try to learn as much as possible from the data flow

between the parties. We return to the issue of honesty

later in this section.

We recast the conventional speech processing algo-

rithms described in Section II as a pipeline of primitive

computations, and sow how to execute each primitive in

a computationally secure manner, i.e., a computationally

bounded participant should not be able to derive private

information possessed by the other participant from the

computation. The output of each stage of the pipeline

is either distributed across both participants in the form

of random additive shares, or arrives at one of the

participants in a locked form, where the other participant

holds the key. Thus both participants must interact to

perform the computations until the final outcome of the

overall computation arrives at the correct participant.

A. Secure Primitives for Speech Processing

To keep the discussion simple, we will consider that

there are only two parties, Alice and Bob, engaged in

the computation. The reader may consider Alice as the

client or end-user who possesses a speech signal to be

analyzed while keeping it private from Bob, the remote

system which has the model parameters, some or all of

which must be kept private from Alice.
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To enable private computation, we will utilize public-

key homomorphic encryption schemes, which enable

operations to be performed on encrypted data [11]. We

keep the development simple by considering an addi-

tively homomorphic cryptosystem [12], [13], [14] with

encryption function E[·]. Such a cryptosystem satisfies

E[x] ·E[y] = E[x + y] and (E[x])y = E[xy] for integer

messages x, y. For a discussion of other flavors of homo-

morphic cryptosystems, namely multiplicatively homo-

morphic, 2-DNF homomorphic and fully homomorphic

cryptosystems, the reader is referred to a companion

article in this issue [27].

We assume that the cryptosystem is semantically

secure [28], i.e., by using fresh random parameters

during encryption but not during decryption, a given

plaintext may be mapped to different ciphertexts

every time encryption is performed. This makes the

cryptosystem, and hence the protocols discussed,

resilient to a chosen plaintext attack (CPA). We

further assume that while Alice and Bob share a

public encryption key, Alice is the only person with

a decryption key that reverses E[·]. This means that

the system may encrypt data if needed, but only the

end-user may decrypt it. However, if required the

situation can be reversed by mirroring the protocols,

with relatively minor additional changes. Assume that

Alice and Bob own n-length integer vectors x and y

respectively. In what follows, E[x] denotes a vector

containing encryptions of the individual elements of x,

i.e., (E[x1], E[x2], ..., E[xn]).

Additive Secret Sharing

Bob has an encrypted value E[x]. He wishes to

share it as random additive clear-text shares with

Alice. He chooses an integer b at random, and sends

E[x] · E[−b] = E[x − b] to Alice. Bob retains b as

his additive share. Alice decrypts x − b = a which is

her additive share. We will represent this operation in

short-hand by saying Alice and Bob receive a and b

such that a + b = SHARE(x).

Secure Inner Product (SIP)

Alice and Bob want to compute uninformative additive

shares a, b respectively of the inner product x⊤y. There

are several ways to achieve this [29], [30], [31], but for

expository purposes, we focus on a simple approach us-

ing additively homomorphic functions [32]. Alice sends

element-wise encryptions E[xi] to Bob. Bob computes
∏n

i=1 E[xi]
yi = E[

∑n
i=1 xiyi] = E[x⊤y]. Alice and

Bob can then receive additive shares a and b of E[xTy]
as a+b = SHARE(x⊤y). Observe that Bob operates in

the encrypted domain and cannot discover x. Similarly,

Alice does not know b, and hence cannot discover y.

When Bob possesses only E[y] rather than y as

assumed above, it is still possible — using a trick

involving additive secret sharing — for Alice and

Bob to obtain additive shares of x⊤y. As a notational

shorthand, when we invoke any variant of this protocol,

we will just state that Alice and Bob obtain additive

shares a, b, such that a + b = SIP (x,y).

Secure Logsum (SLOG)

Suppose that x + y = (ln z1, ln z2, ..., ln zn). By

a slight abuse of notation, denote the vector of the

elementwise logarithms and elementwise exponents of

the elements of x as lnx and ex respectively. Alice and

Bob wish to obtain uninformative additive shares, a and

b such that a + b = ln (
∑n

i=1 zi), which is the “logsum”

operation that gives the protocol its name. We note that
∑n

i=1 zi =
∑n

i=1 exi+yi and achieve the desired secret

sharing using the following protocol [7]:

1) Alice chooses a at random. Then Alice and Bob

compute additive shares q, s such that q + s =
SIP (ex−a, ey) using the SIP protocol above. Bob

combines these shares to obtain the inner product

φ.

2) Bob computes b = lnφ = −a+ln (
∑n

i=1 exi+yi) =
−a + ln (

∑n
i=1 zi), which gives the desired result.

In the first step above, Alice and Bob employ additive

secret sharing in the exponent, which is equivalent to

multiplicative secret sharing. The parameter a should be

chosen large enough because multiplicative secret shar-

ing is not as secure as standard additive secret sharing.

We present this protocol to illuminate the fact that homo-

morphic functions can be manipulated to compute useful,

non-obvious functions. The same functionality can be

obtained in a secure manner using other cryptographic

primitives, e.g., garbled circuits. To refer to this protocol

henceforth, we will state that Alice and Bob obtain

additive shares a, b, such that a + b = SLOG(ln z).
In an alternate scenario, Bob possesses

E[ln z1], E[ln z2], · · · . He wishes to obtain E[log
∑

i zi].
He uses the SHARE protocol to share E[ln zi] ∀i with

Alice and proceeds as earlier. Finally, Alice sends E[a]
to Bob who computes E[log

∑

i zi] = E[a]E[b]. Note

that in the process Alice and Bob also obtain additive

shares of the outcome. We will denote this operation

by stating that Bob receives c such that c = SLOG(ln z).

Secure Maximum Index (SMI)

Alice and Bob wish to compute additive shares,

such that a + b = argmaxi xi + yi without revealing

their data to each other. This is achieved by exploiting

homomorphic encryption to perform blind-and-permute
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operations [33]. Let z = x + y. Then, the goal is to

privately compute additive shares of the index of the

largest element of z. To accomplish this, Alice chooses

a secret permutation πA on the index set {1, 2, ..., n}.

Similarly Bob chooses a secret permutation πB on the

same set. The outcome of the blind-and permute protocol

is that Alice and Bob each obtain additive shares of

πAπBz. Neither can reverse the other person’s permu-

tations. However, given the permuted shares, Alice and

Bob can use repeated instantiations of the millionaire

protocol [17], obtain the index of the maximum element

in the permutation of z, from which, using their respec-

tive permutations, they can obtain shares of the index of

the maximum element in z. To see the steps involved

in minimum finding based on homomorphic encryption,

refer to a companion article submitted to this special

issue [34]. Alternatively the entire minimum finding

protocol may be executed using garbled circuits [35]. As

a shorthand notation, we say that Alice and Bob obtain

additive shares a, b, such that a + b = SMI(x,y)
In an alternate scenario, Bob has two encrypted

numbers E[x] and E[y] and desires to find which of the

two is larger, he can engage in protocols such as those

described in [36], which employ threshold encryption

or secret sharing schemes in which both parties must

cooperate to perform decryption such that one of them

can obtain the answer without exposing x or y to either.

We denote this also as max(x, y) = SMI(x, y); this

should not result in confusion since the actual operation

used will be clear from the context.

Secure Maximum Value (SMV)

Alice and Bob wish to compute uninformative additive

shares a, b such that a + b = maxi xi + yi. This is

achievable using a protocol similar to the one described

above, with the only difference being in the last step,

which – instead of revealing the index of the maximum –

reveals additive shares of the maximum value. To invoke

this protocol, we will state that Alice and Bob obtain

additive shares a, b, such that a + b = SMV (x,y) [7].

Other similar protocols may be defined. In particular,

it is often essential to compute distance measures, such

as the Hamming or Euclidean or Absolute distance

between vectors x and y held privately by Alice and

Bob respectively. Protocols for these computations can

be efficiently designed using homomorphic functions

and are an integral part of privacy-preserving nearest

neighbor methods which are covered in a separate

article in this issue [34].

Practical Considerations

An important practical consideration is that we cannot

always assume that x and y are integer vectors. Indeed,

speech processing routinely uses probabilistic models,

such as Gaussian Mixture Models (GMMs) and Hidden

Markov Models (HMMs) in which the model parameters

are floating point values between 0 and 1. A particular

problem that is nearly ubiquitous in the iterative algo-

rithms used to perform modern speech processing is that

multiplication of probability values result in extremely

small numbers. One way to mitigate this issue of floating

point precision is to take the logarithm of the probability

values and operate exclusively in the logarithmic domain.

In fact, the need to perform operations on the logarithms

of the probability values is what makes the SLOG

protocol so useful. A second way to mitigate the issue

of extremely small probability values is to appropriately

scale the probability values by a large constant, e.g., 106

prior to all encryptions and compensate for the scaling

after decryption.

B. Computing Scores Privately for Speech Processing

The computations involved in speech processing tasks

can now be cast in terms of the above primitives. We

first consider how the various required scores can be

computed privately.

The Gaussian as a Dot Product

The fundamental component of speech processing

models is the Gaussian, since observation distributions

are generally modeled as Gaussian mixtures. The form

of the log of a multi-variate Gaussian is well known:

log P (x) = −0.5(x−µ)⊤Σ−1(x−µ)−0.5 log(2π)D|Σ|

where D is the dimensionality of the data, and µ and

Σ are the mean vector and covariance matrix of the

Gaussian. It is fairly simple to show that this can

be manipulated into the form x̃T W̃ x̃ [7] where x̃ is

obtained by extending x as x̃ = [x⊤1]⊤, and

W̃ =

[

−0.5Σ−1 Σ−1µ

0 w∗

]

(7)

where w∗ = −0.5µ⊤Σ−1µ − 0.5(2π)D log |Σ| +
log prior, and prior captures an a priori probability

associated with the Gaussian. In the case of a solitary

Gaussian, prior = 1; however if the Gaussian is one

from a mixture, prior represents the mixture weight

for the Gaussian. We can reduce the above computation

further to a single inner product x̄⊤W , where x̄ is

a quadratically extended feature vector derived from

x̃ which consists of all pairwise product terms x̃ix̃j

of all components x̃i, x̃j ∈ x̃, and W is obtained
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by unrolling W̃ into a vector. In this representation

logN (x;µ,Σ) = x̄⊤W .

Privacy preserving computation of a Log Gaussian

Input: Alice possesses a vector x. Bob possesses a

Gaussian parameterized by λ = {µ,Σ}.

Output: Alice and Bob obtain random additive shares a

and b such that a + b = log P (x;λ).

1) Alice computes the extended vector x̄ from x. Bob

arranges his model into a vector W as explained

above.

2) Alice and Bob engage in the SIP protocol to obtain

additive shares a and b: a + b = SIP (x̄, W ).

Note that this is possible even if Bob only possesses

an encrypted version of W . Note also that given only

E[µ], E[Σ] and E[prior] Bob can obtain E[W ] using

the protocol given in [9]. In either case, Alice and Bob

obtain no information about each other’s data.

Computing the Logarithm of a Gaussian Mixture Pri-

vately

Input: Alice possesses x. Bob possesses Λ =
{λ1, λ2, · · · , λK}, the parameters of a Gaussian mixture

with K Gaussians, each with parameter λi.

Output: Alice and Bob receive a and b such that

a + b = P (x; Λ).

1) Bob arranges the parameters λi of each Gaussian

into a vector Wi, i = 1, . . . ,K.

2) For each i = 1, . . . ,K, Alice and Bob engage in

the SIP protocol to obtain additive shares ci and di

such that ci + di = SIP (x̄, Wi). Note that if Wi is

available in unencrypted form, Alice only needs to

transmit E[x̄] once for the entire Gaussian mixture.

3) Alice and Bob apply the SLOG protocol to

obtain a + b = SLOG(lng), where g =
[c1 + d1, · · · , cK + dK ], where ci + di is the log

of the ith Gaussian.

As before, Alice and Bob do not learn about each

other’s data. We will refer to this operation as

a + b = SMOG(x,Λ).

Computing the logarithm of an HMM forward score

privately

Input: Alice possesses X = [x1, x2, · · · , xT ]. Bob

possesses an M -state HMM Γ = {Π,A,Λ}, with

initial state probabilities Π = [π1, · · · , πM ], a transition

matrix A comprising vectors ai = [ai,1, · · · , ai,M ]
and a set of state output Gaussian mixture densities

Λ = {Λ1,Λ2, · · · , ΛM}.

Output: Alice and Bob obtain a and b such that

a + b = log P (X; Γ).

Step I State output density computation

1) For all t = 1 · · ·T, i = 1 · · ·M

a) Alice and Bob engage in the SMOG pro-

tocol to obtain additive shares gt,i + ht,i =
SMOG(xt, Λi). Alice sends E[gt,i] to Bob.

b) Bob computes qt,i = E[gt,i]E[ht,i] = E[gt,i +
ht,i] = E[log P (xt; Λi)] to obtain the encrypted

value of the logarithm of the state output distri-

bution for state i on xt.

In the protocol below we use the notation αl(t, i) =
log α(t, i) and αl(t) = [log α(t, 1), · · · , log α(t, M)].
We represent {qt,i ∀i} obtained by Bob in the above

computation as qt. Now Bob precomputes E[log ai] ∀i.

The recursions of the forward probability computation

in HMMs given by Equation 4 can now be computed

in the log domain securely as follows.

Step II Forward Algorithm

1) Bob computes E[αl(1)] = qt · E[log π].
2) For t = 2 · · ·T , i = 1 · · ·M

a) Bob engages with Alice in the SLOG protocol

to obtain c = SLOG(log ai + αl(t − 1)). Note

that c = E[log
∑

j α(t − 1, j)aj,i].
b) Bob computes E[αl(t, i)] = c.qt,i

3) Alice and Bob engage in the SLOG protocol to

obtain additive shares a + b = SLOG(αl(T )).
Note that a and b are additive shares of

log P (x1, x2, · · · , xT ;Γ).

We will refer to this operation as a+b = SFWD(X,Γ).

Secure Viterbi Algorithm

The Viterbi algorithm is very similar to the forward

algorithm, except for two key differences. First, instead

of adding all incoming probabilities into any state in (4),

we choose the maximum in (6). Additionally, Alice must

also receive the optimal state sequence. Ideally, state

indices would be permuted in the received sequence;

however, for simplicity, we omit the additional com-

plexity involved with permuting the indices. Using the

notation of (6): δ(t, i) refers to the “best” predecessor

for state si at time t. Γ(t, i) is the joint log likelihood

of the most probable state sequence arriving at state si

at time t and the observation sequence x1, · · · ,xt. We

will use the notation that a bold character represents a

vector that aggregates the scalar values represented by

the corresponding unbolded symbol for all states. For

instance Γ(t) = [Γ(t, 1),Γ(t, 2), · · · ,Γ(t, M)].
Input: Alice possesses X = [x1, x2, · · · , xT ]. Bob

possesses an M -state HMM Γ = {Π,A,Λ}.

Output: Alice and Bob obtain additive shares a and b

such that a + b = log maxs P (X, s; Γ). Alice receives
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the optimal state sequence s̄ = s1, · · · , sT .

The protocol uses operations similar to the ones de-

scribed in the previous section and in the secure forward

algorithm described above. For the detailed steps of the

protocol, the reader is referred to [7].

C. Implementing Secure Speech Techniques

Having set up the operations as described above,

we now consider how they may be applied to our

speech problems. We will generally assume that all

models have already been learned by the system,

and, where required (e.g. speaker authentication), the

models are encrypted. To avoid making the development

unnecessarily complex, we do not describe how to

privately learn GMM/HMM parameters [7], or how to

privately adapt an existing background GMM or UBM

to a user’s enrollment data [9].

Speaker authentication

Input: The system possesses encrypted models ΛS

for the speaker and clear-text models ΛU as the uni-

versal background model. The user possesses vectors

x1,x2, · · · ,xT .

Output: The system authenticates the user.

1) For each t = 1 · · ·T

a) The user and the system engage in the SMOG

operation with xt and ΛS to obtain additive

shares aS
t and bS

t .

b) The user and the system engage in the SMOG

operation with xt and ΛU to obtain additive

shares aU
t and bU

t .

2) The user computes AS =
∑

t aS
t and AU =

∑

t aU
t .

The system computes BS =
∑

t bS
t and BU =

∑

t bU
t

3) The user and system engage in an SMI protocol to

determine max(AS + BS , AU + BU ). The system

gets the result.

Speaker identification

Input: The system possesses a set of models

Λ1, Λ2, · · · ,ΛN corresponding to speakers 1 · · ·N (we

consider the “background” model to be one of the

speakers). The user has X = [x1, · · · ,xT ].
Output: The system learns argmaxi P (X; Λi).

1) For each speaker s = 1 · · ·N ,

a) For each time t = 1 · · ·T , the user and the system

engage in the SMOG operation with xt and Λs

to obtain additive shares as
t and bs

t .

b) The user computes As =
∑

t as
t . The system

computes Bs =
∑

t bs
t .

2) The user and system engage in an SMI protocol

to determine argmaxs As + Bs. The system gets

the result.

Speech Recognition

Input: The system possesses a set of models

Γ1,Γ2, · · · ,ΓN corresponding to words or word se-

quences 1 · · ·N (we consider the “background” model to

be one of the phrases). The user has X = [x1, · · · ,xT ].
Output: The system learns argmaxi P (X; Γi). For iso-

lated word recognition or phrase spotting, the speech

recognition processes can generally be summarized into

the following procedure.

1) For each word sequence s = 1 · · ·N , the user and

the system engage in the SFWD operation with X

and Γs to obtain additive shares As and Bs.

2) The user and system engage in an SMV protocol

to determine argmaxs As+Bs. The system gets the

result.

The above operation is entirely performed in the log
domain – all probabilities are log probabilities – and is

hence robust to underflow. In practice the secure Viterbi

algorithm is a better choice than the forward algorithm

to compute class scores, since its secure implementation

has fewer expensive SMOG operations, which are re-

placed by SMV operations. In this case P (X; Γs) can

be computed using the Secure Viterbi Algorithm instead

of SFWD as described earlier. For continuous speech

recognition the optimal state sequence (and the word

sequence corresponding to it) can be obtained using the

Secure Viterbi Algorithm.

D. Analyzing the protocols

Correctness:

All of the presented protocols, including the

primitives, the score computation and the actual

classification procedures above are easily shown to

be correct – the final result obtained with the private

protocols is exactly what would have been obtained

had the operations been performed in a non-private

manner. It can also be ascertained that in practical

implementations the insecure and secure versions of the

computations are virtually indistinguishable, thus the

accuracy tradeoff owing to encryption is negligible [7],

[8].

Security:

Each of the operations above is also computationally

secure against honest but curious participants. The indi-

vidual primitives in Section IV-A are easily shown to be

secure (e.g. [37]) – Alice and Bob do not learn about
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each others’ data at all, since they only see ciphertexts,

or data masked by additive noise [38]. Consequently, the

secure Gaussian operation, the SMOG operation, the

SFWD and the Secure Viterbi (SV IT ) protocol are all

guaranteed not to reveal the user and system’s data to

one another if the protocols are correctly followed. In

general, none of the protocols reveal more than what the

outcome of the computation itself reveals.

One might also consider a malicious model, where

one or more parties may manipulate the data or send

bogus data in an attempt to disrupt the protocol or

learn about the other party’s data. If both parties are

malicious, security can be enforced by accompanying

the protocols with zero-knowledge proofs [39]. If only

one of the parties is malicious, the other party can use

conditional disclosure of secrets [40] to make sure he/she

receives valid inputs from the malicious party. Both these

methods, however, greatly increase the computation and

communication overhead of the protocols.

Finally we note that although, technically, the

proposed protocols (SV IT ) also permit fully continuous

speech recognition (CSR), they assume that the entire

HMM representing the complete word graph to be

searched is evaluated for each analysis frame. In

practice, CSR is never preformed in this manner, even

in conventional non-private implementations. CSR

has a high memory footprint and high computational

complexity, and the word graphs must be pruned

heavily based on partial scores, in order to restrict the

computation. The act of pruning restricts the hypothesis

set considered and reveals information about the

recognition output. Techniques to hide this information

are not within the scope of this article, although they

are topics of active research.

Performance:

The private computation techniques must in princi-

ple result in identical classification outcomes to their

conventional non-private counterparts. Although there

is a minor loss of resolution resulting from the fact

that all computation must now be performed with fixed-

point arithmetic to accommodate encryption over integer

fields, this has little effect on accuracy – speech process-

ing applications have historically achieved reasonable

performance with fixed-point implementations with as

little as 16 bits of resolution.

Perhaps the most important performance consideration

is the additional computational complexity imposed by

the privacy primitives. In particular, computing a single

Gaussian securely takes a significant fraction of a second

on a desktop computer [7]. Table I reports computation

times for 1 second of audio [8] on an isolated word

recognition experiment for a vocabulary of the ten digits

0-10, each of which was modeled by a 5-state HMM

with a single Gaussian. Results were obtained on a 3.2

GHz Pentium 4. The Paillier encryption scheme was

used [12]. The difference between the forward scores

computed using secure computation those computed in

the conventional manner was less than 0.52%, and the

classification accuracy for the secure and conventional

versions was nearly the same, being 99%. Results with

different key sizes are given primarily to show the trends

in the computation time. It should be noted that Paillier

encryption based on 256-bit and 512-bit keys is no

longer considered sufficiently secure in the cryptography

community.

Table II shows a similar computational expense table

containing the average time required to perform privacy-

preserving speaker authentication on a Core 2 Duo 2

GHz Linux machine per second of input audio. In this

case, BGN encryption [41] is employed, rather than the

significantly less expensive Paillier encryption. The data

are from the YOHO dataset [42]. Both the speaker and

the subject were modeled by mixtures of 32 Gaussians,

and the audio was represented by a sequence of 39-

dimensional feature vectors computed at the rate of 100

times a second. By comparison, the “insecure” compu-

tation on the same experiment took only 3.2 seconds

per second of audio. The scores computed by the secure

computation were identical to within five decimal places

to those obtained in the insecure conventional classifier.

Classification accuracies on this data set, with this setup

achieves an EER of about 7%. Clearly then, computa-

tion is a serious bottleneck. Encryption and decryption

take the most time. Additional operations take relatively

small time in comparison to the overhead of cipher

text processing; nevertheless even they are considerably

more expensive than insecure computation. The times

shown do not include communication overhead; however

for these tasks the communication overhead is trivial

compared to the computational expenses.

In the experiments presented above, the implementa-

tions were far from optimal. Moreover, the primitives

described herein can themselves be optimized; it is not

TABLE I

EXECUTION TIME FOR ISOLATED WORD RECOGNITION PROTOCOL

(PAILLIER ENCRYPTION).

Activity 256-bit 512-bit 1024-bit

keys keys keys

Alice encrypts input data 205.23 s 1944.27 s 11045 s

(only once)

Bob computes ξ(log bj(xt)) 79.47 s 230.30 s 461 s

(per HMM)

Both compute ξ(αT (j)) 16.28 s 107.35 s 785 s

(per HMM)
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TABLE II

EXECUTION TIME FOR THE VERIFICATION PROTOCOL (PAILLIER

ENCRYPTION).

Steps Time (256-bit) Time (1024-bit)

Encrypting x̄t ∀t 138 s 8511 s

Evaluating Adapted 97 s 1809 s

Evaluating UBM ≈ 97s ≈ 1809s

Comparison 0.07 s 4.01 s

Total =E[x̄t] + adapted 331 s 12133 s

+ UBM + compare ∼ 5.47 min ∼ 3 hr, 32 min

clear that the particular structure chosen to decompose

the computations is optimal from the perspective of

computational complexity. Performing computations on

parallel processors, more efficient implementations of

encryption etc. all may improve the speeds by some

orders of magnitude; regardless, the final outcome is

currently far slower than the speed performance of

insecure computations.

The methods described so far provide privacy to

conventional state-of-art mechanisms for performing pat-

tern recognition applications on speech. An alternate

mechanism may be to modify the matching algorithms

themselves to make them more amenable to efficient

secure implementations. In the next section, one such ap-

proach is described. These techniques are not as generic

in their scope as SMC- based methods described above,

since the right form of classifier must be found for the

task. Specifically, the technique we describe now applies

only to speaker authentication and congruent tasks.

V. SPEECH PROCESSING AS PRIVACY PRESERVING

STRING MATCHING

We now discuss an alternative framework for privacy-

preserving speech processing based on private string

comparison. The main idea is to convert a speech sample

into a fingerprint, i.e., a fixed-length bit string. This

representation allows us to compare two speech samples

by checking if their respective fingerprints match exactly.

Unlike the cryptographic framework described earlier,

string comparison is non interactive, and also much

faster than encryption which enables us to perform the

privacy-preserving processing very efficiently.

The fingerprint representation is similar to a text-

password system. The privacy issues are also similar;

the user requires the system to store and compare the

passwords in an obfuscated form, so that an adversary

cannot observe the original passwords. Furthermore, we

require the system to be accurate; just as the password

system is able to reject users entering incorrect pass-

words, the privacy-preserving speech processor should

be able to classify speech samples accurately. Finally,

the performance of this string comparison-based speech

processing approach should be competitive with con-

ventional speech processing methods. Initial software

implementations reveal a tradeoff between a significant

increase in speed and a small degradation in the accuracy

with respect to classical methods based on, for example,

Hidden Markov Models.

The twin objectives of accuracy and privacy are

achieved as follows: A data-length independent feature

vector (string) is derived from the speech signal such that

string comparison implies a nearest-neighbor classifica-

tion. Second, these vectors are converted into password-

like bit strings that are not invertible. We describe these

briefly below.

A. Feature Representation: Supervectors

An obvious solution to create a fingerprint is to apply

a cryptographic hash function H[·], e.g., SHA-256 [43],

to the speech input itself. However, direct conversion

of audio signals into fingerprint-like patterns is difficult,

due the inherent variation in cadence and length of audio

recordings. A more robust length- and cadence-invariant

representation of the audio is first required.

Campbell, et al. [44] extend the MAP adaptation

procedures for GMMs mentioned in Section II-A to

construct a supervector (SV) to represent each speech

sample. A supervector is a characterization of an estimate

of the distribution of feature vectors derived from the

speech recording. It is obtained by performing maximum

a posteriori (MAP) adaptation of the UBM over the

recording and concatenating the parameters, typically

just the means, or means and mixture weights of the

adapted model. For instance, given the adapted model

λs = {ŵs
i , µ̂

s
i , Σ̂

s
i} with M Gaussian components, the

supervector sv is given by (µ̂s
1 ‖ µ̂s

2 ‖ · · · ‖ µ̂s
M ).

The supervector is then used as a feature vector instead

of the original feature vectors derived from the speech

sample. In the speaker authentication task addressed by

Campbell et al., authentication verification is performed

using a binary support vector machine (SVM) classifier

for each user. The SVM is trained on supervectors

obtained from enrollment utterances from the user, as

instances of one class, and from a collection of impostor

recordings as instances of the opposite class. As the

classes are usually not separable in the original space,

[44] also use a kernel mapping that is shown to achieve

higher accuracy.

A related approach is to use k-nearest neighbors

trained on supervectors as our classification algorithm.

The rationale for this approach is twofold: firstly, k-

nearest neighbors allow classification with non-linear

decision boundaries with accuracy comparable to SVMs

with kernels [45]. Secondly, using the LSH transfor-

mations discussed below, private k-nearest neighbors
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Fig. 1. Locality Sensitive Hashing

computation can be reduced to private string comparison,

which can be easily accomplished without an interactive

protocol.

B. Locality Sensitive Hashing

Locality sensitive hashing (LSH) [46] is a widely used

technique for performing efficient approximate nearest-

neighbor search. An LSH function L(·) proceeds by

applying a random transformation to a data vector x to

projecting it to a vector L(x) into a lower dimensional

space, which we refer to as the LSH key or bucket. A set

of data points that map to the same key are considered

as approximate nearest neighbors (Figure 1).

A single LSH function does not group the data points

into fine-grained clusters, one must use a hash key

obtained by concatenating the output of k LSH functions.

This k-bit LSH function L(x) = L1(x) · · ·Lk(x) maps

a d-dimensional vector into a k-bit string. Two data

vectors may be deemed to be highly similar if the k-

bit hashes derived from them are identical. Such fine

selectivity may however have an adverse effect on the

recall in identifying neighbors when the data from a class

have significant inherent variations. To address this, m

different LSH keys are computed over the same input to

achieve better recall. Two data vectors x and y are said to

be neighbors if at least one of their keys, each of length

k, matches exactly. LSH provides a major efficiency

advantages: By precomputing the keys, the approximate

nearest neighbor search can be done in time sub-linear

in the size of the dataset.

A family of LSH functions is defined for a particular

distance metric. A hash function from this family has the

property that data points that are close to each other as

defined by the distance metric are mapped to the same

key with high probability. There exist LSH constructions

for a variety of distance metrics, including arbitrary

kernels [47], but we mainly consider LSH for Euclidean

distance (E2LSH) [48] and cosine distance [49] as the

LSH functions for these constructions are simply random

vectors. As the LSH functions are data independent, it

is possible to distribute them to multiple parties without

privacy loss.

The LSH construction for Euclidean distance trans-

forms a d-dimensional vector into a vector of k integers.

The ith entry of the hash is as follows.

Li(x) =

⌊

rT
i x + b

w

⌋

, (8)

where ri is a d-dimensional vector with each component

drawn iid from N (0, 1), w is the width of the bin, (e.g.,

255), and b ∈ [0, w]. Similarly, the construction of the

ith bit of the LSH for cosine distance, using ri defined

as above is given by

Li(x) =

{

1 if rT
i x > 0,

0 otherwise,
(9)

LSH is inherently not privacy preserving due to its

locality sensitive property. It is possible to reconstruct

the input vector by observing a sufficient number of

LSH keys obtained from the same vector. To satisfy the

privacy constraint, a cryptographic hash function H[·] is

applied to the LSH keys. Cryptographic hash functions,

such as SHA-256, MD5, are orders of magnitude faster

to compute compared to homomorphic encryption.

C. Privacy-Preserving Speech Processing through

String Comparison

The private string comparison framework lends itself

very well to biometric tasks where audio-length-invariant

supervector representations of the audio may be derived.

In applications such as speaker verification and speaker

identification, the user can convert the test speech sample

into supervectors, apply the LSH transformation, and

finally apply a cryptographic hash function and submit

the output to the system. The system can simply compare

the hashes provided by the user to the hashes computed

over the enrollment data and accept or reject the user

by comparing the number of matches to a pre-calibrated

threshold. Due to the irreversibility of the hashes, the

system is not able to recover the original speech sample,

and we are able to maintain the privacy of the speech

input. As an illustrative example, we present the string

comparison technique applied to the privacy-preserving

speaker verification problem below and refer the reader

to [10] for other applications.

D. Privacy-Preserving Speaker Verification as String

Comparison

As the possible values for LSH keys discussed above

lie in a relatively small set by cryptographic standards,

256k for k-bit Euclidean LSH and 2k for k-bit cosine

LSH, it is possible for the server to obtain L(s) from

H[L(s)] by applying brute-force search. To make this
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Fig. 2. Speaker Verification as String Comparison

attack infeasible, the domain of the hash function H[·] is

increased by concatenating the LSH key with a long ran-

dom string qi (e.g., 80-bits in length) that is unique to the

user i, which is called the salt, as summarized in Fig. 2.

Requiring the user to keep the salt private and unique

to each system, also gives the additional advantage of

rendering cryptographically hashed enrollment data use-

less to an adversary. With this modification, LSH-based

privacy-preserving speaker verification is achieved using

the enrollment and authentication protocols described

below:

A. Enrollment Protocol

Each user has a set of enrollment utterances

{x1, . . . ,xn}. The users also obtain the UBM and the

l LSH functions {L1(·), . . . , Ll(·)}, each of length k-

bit from the system. Each user i generates the random

80-bit salt string qi.

For each enrollment utterance xj , user i:

a) performs adaptation of xj with the UBM to obtain

supervector sj .

b) applies the l LSH functions to sj to obtain the keys

{L1(sj), . . . , Ll(sj)}.

c) applies the cryptographic hash function salted with

qi to each of these keys to obtain

{H[L1(sj) ‖ qi], . . . ,H[Ll(sj) ‖ qi]}, and sends

them to the system.

B. Authentication Protocol

For a test utterance x′, user i:

(a) performs adaptation of x′ with the UBM to

obtain supervector s′.

(b) applies the l LSH functions to s′ to obtain the

keys

{L1(s
′), . . . , Ll(s

′)}.

(c) applies the cryptographic hash function salted

with qi to each of these keys to obtain

{H[L1(s
′) ‖ qi], . . . ,H[Ll(s

′) ‖ qi]}, and sends

it to the system.

(d) The system computes the number of matches

between the hashed keys for the test utterance

and the corresponding hashes of enrollment ut-

terances. If this number exceeds a threshold, it

TABLE III

AVERAGE EER FOR THE TWO ENROLLMENT DATA

CONFIGURATIONS AND THREE LSH STRATEGIES: EUCLIDEAN,

COSINE, AND COMBINED (EUCLIDEAN & COSINE).

Enrollment: Only Speaker

Euclidean Cosine Combined

15.18% 17.35% 13.80%

Enrollment: Speaker & Imposter

Euclidean Cosine Combined

15.16% 18.79% 11.86%

accepts the user.

match =
∑

i∈enrollment

l
∑

j=1

I(H[Lj(si) ‖ qi]

= H[Lj(s
′) ‖ qi]),

if match > threshold : accept.

The system never observes any LSH key before a

salted cryptographic hash function is applied to it. Apart

from the salt, the user does not need to store any speech

data on its device. The enrollment and verification proto-

cols, therefore, satisfy the privacy constraints discussed

above.

E. Experiments

Experiments examining the accuracy and performance

of LSH-based schemes have been reported using the

YOHO dataset [42] which comprises of a collection

of short utterances, each a sequence of three two-

digit numbers, produced by 138 speakers. There

are 96 enrollment utterances and 40 test utterances

from each speaker. Mel-frequency cepstral coefficient

(MFCC) features augmented by differences and double

differences are chosen as feature vectors in these

experiments [10]. A UBM with 64 Gaussian mixture

components is trained on a random subset of the

enrollment data belonging to all users. Supervectors are

obtained by individually adapting all enrollment and

verification utterances to the UBM.

Accuracy

The lowest equal error rate (EER) was achieved

by using l = 200 instances of LSH functions each

of length k = 20 for both Euclidean and cosine

distances. Table III indicates that LSH for Euclidean

distance performs better than LSH for cosine distance,

while combining the two classifiers gives the best

accuracy. Furthermore, using imposter data achieves
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lower EER when using the combined scores for both

the distances: one-sided classifiers are clearly not

sufficiently accurate. While the actual error rates in this

example may appear relatively high, it should be noted

that an SVM-based classifier working from supervectors

obtained a classification accuracy of 10.8% on the same

setup. In other experiments not reported here, using

supervectors derived from more detailed GMMs, EERs

of approximately 5% have been obtained using the

string matching framework.

Execution Time

Compared to a non-private speaker recognition system

based on supervectors, the only computational overhead

for the privacy-preserving version is in applying the

LSH and salted cryptographic hash function. For a

64 × 39 = 2496-dimensional supervector representing

a single utterance, the computation for both Euclidean

and cosine LSH involves a multiplication with a random

matrix of size 20 × 2496 which requires a fraction

of a millisecond. Performing this operation 200 times

required 15.8 milliseconds on average [10]. The reported

times are for a laptop running 64-bit Ubuntu 11.04 with

2 GHz Intel Core 2 Duo processor and 3 GB RAM.

The Euclidean and cosine LSH keys of length k = 20
require 8 × 20 bits = 20 bytes and 20 bits = 1.6 bytes

for storage respectively. Using a C++ implementation

of SHA-256 cryptographic hashing algorithm based on

the OpenSSL libraries [50], hashing 200 instances of

each of these keys in total required 28.34 milliseconds

on average. Beyond this, the verification protocol only

consists of matching the 256-bit long cryptographically

hashed keys derived from the test utterance to those

obtained from the enrollment data.

VI. CONCLUSIONS

The two frameworks presented in this article both

show promise in enabling privacy-preserving speech

processing. The cryptographic framework, while more

generic, carries the usual computational overhead of

cryptography. However, it can be made arbitrarily se-

cure and flexible. The string-matching framework, on

the other hand, is much more efficient; however it is

restricted in its applicability and currently results in a

degradation of performance.

At this point, both of them can only be viewed as

initial forays into the implementation of truly secure

speech-processing frameworks, and much work remains.

Researchers continue to investigate more efficient proto-

cols, possibly using simpler encryption techniques which

could be orders of magnitude faster than the methods

described here. Within the string-matching framework,

recent work has shown that significantly greater accu-

racies can be obtained using nearest-neighbor methods

such as those described in [34]. These also show great

promise in affording greater generalizability than the

string-matching solutions described here.

A computationally efficient implementation of a fully

homomorphic encryption (FHE) scheme [27] would sig-

nificantly change the construction of privacy preserving

protocols. This would allow the creation of a non-

interactive protocol where the user uploads the encrypted

speech sample, and the server can perform all the neces-

sary computations without requiring any further involve-

ment from the user. Such a scheme would not alleviate all

the problems of privacy-preserving computation; there

would still be a need to deal with key distribution, ma-

licious adversaries, communication overhead, and many

other practical problems. Nevertheless, researchers and

practitioners of privacy-preserving speech processing are

following developments in FHE with interest.
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