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Structure and Texture Filling-In of Missing
Image Blocks in Wireless Transmission and

Compression Applications
Shantanu D. Rane, Guillermo Sapiro, and Marcelo Bertalmio

Abstract—An approach for filling-in blocks of missing data
in wireless image transmission is presented in this paper. When
compression algorithms such as JPEG are used as part of the
wireless transmission process, images are first tiled into blocks
of 8 8 pixels. When such images are transmitted over fading
channels, the effects of noise can destroy entire blocks of the image.
Instead of using common retransmission query protocols, we aim
to reconstruct the lost data using correlation between the lost
block and its neighbors. If the lost block contained structure, it is
reconstructed using an image inpainting algorithm, while texture
synthesis is used for the textured blocks. The switch between the
two schemes is done in a fully automatic fashion based on the
surrounding available blocks. The performance of this method
is tested for various images and combinations of lost blocks. The
viability of this method for image compression, in association with
lossy JPEG, is also discussed.

Index Terms—Compression, filling-in, inpainting, interpolation,
JPEG, restoration, texture synthesis, wireless transmission.

I. INTRODUCTION

GENERAL purpose images are most commonly com-
pressed by lossy JPEG. JPEG divides the image into

blocks of 8 8 pixels and calculates a two-dimensional (2-D)
discrete cosine transform (DCT), followed by quantization and
Huffman encoding; see [1]. In common wireless scenarios,
the image is transmitted over the wireless channel block by
block. Due to severe fading, we may lose an entire block,
even several consecutive blocks of an image. In [2] the authors
report that average packet loss rate in a wireless environment
is 3.6% and occurs in a bursty fashion. In the worst case, a
whole line of image blocks might be lost. Note that JPEG
uses differential encoding for storing the average (dc) value
of successive pixels. Hence, even if a single block is lost,
the remaining blocks in that line (or reset interval) might be
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received without their correct average (dc) value. Two common
techniques to make the transmission robust are forward error
correction (FEC) and automatic retransmission query protocols
(ARQ). Of these, FEC needs extra error correction packets to
be transmitted. As noted in [3], ARQ lowers data transmission
rates and can further increase the network congestion which
initially induced the packet loss. Instead, we show that it is
possible to satisfactorily reconstruct the lost blocks by using the
available information surrounding them.1 This will result in an
increase in bandwidth efficiency of the transmission. The basic
idea is to first automatically classify the block astexturedor
structured(containing edges), and then fill-in the missing block
with information propagated from the surrounding pixels. In
the case of structured blocks, the inpainting algorithm in [4]
is used, while for textured regions we follow [5].2 We test the
proposed scheme with a variety of images and simulated block
losses. We also combine this approach with JPEG compression
itself, where the encoder voluntarily skips blocks, and these
are reconstructed at the decoder in the same fashion as in the
wireless scenario. This process improves the compression ratio,
at little or no quality degradation.

II. PREVIOUS RELATED WORK

Most schemes reported in the literature deal with image trans-
mission in error-prone environments using a combination of
source and channel coding. The authors in [2] describe a pack-
etization scheme in which the DCT coefficients array generated
by JPEG is grouped such that bursty (consecutive) packet loss
during transmission is scattered into a pseudo-random loss in
the image domain (i.e., consecutive blocks are rarely lost in
the image domain). The ensuing reconstruction scheme bene-
fits because, most frequency components can be recovered from
adjacent blocks. However, large bursts may cause the errors
to cluster in the image, and reconstruction suffers. It should
be noted that the packetization scheme proposed in [2], when
used with the reconstruction scheme described in our paper, is
expected to further improve on the results reported here, and
provide satisfactory reconstruction results even for very large
bursts.

1The location of lost data, that is, lost image blocks, is known in common
wireless scenarios.

2Other algorithms could be used as well, e.g., [6]–[10], but the ones we use
were shown in the literature to produce state-of-the-art results at an acceptable
low computational cost.
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Fig. 1. Texture synthesis procedure.

The authors in [3] also note that interleaving the image data
before packetization avoids loss of contiguous areas in an image,
facilitating reconstruction. This paper demonstrates reconstruc-
tion in the transform domain by expressing the lost data as a
linear combination of blocks in the 4-neighborhood of the lost
block. Four optimal weights (coefficients) need to be calculated
per block based on combinations of available adjacent blocks.
These weights, which result in a 10% space overhead, are used
later in reconstruction. Strong diagonal edges are not well re-
constructed by this method, as explained in [3].

Additional work on the reconstruction of missing data in
block-based compression schemes is reported in [11], where
the DCT coefficients of a missing block are interpolated from
those with the same position in the neighboring blocks.

The novelty of our proposed scheme is in the separation of
the lost blocks into different classes, followed by the use of
state-of-the-art image filling-in algorithms for textured and
structured regions. This is done in a complete automatic fashion
and without any side information.

III. PROPOSEDALGORITHM

The reconstruction of lost blocks follows three computation-
ally efficient steps:3

a) classify lost blocks into texture and structure;
b) synthesize blocks which were classified as texture (use

texture synthesis);
c) fill in blocks which were classified as structure (use image

inpainting).

We now proceed to describe each one of these components.

A. Block Classification

The first step in the reconstruction is to classify the lost blocks
into texture or structure. This decision is taken at the receiver
by querying the region surrounding the lost block. Lost blocks
are, of course, excluded from the querying process. (Alterna-
tively, we may perform this procedure at the transmitter, and

3Recall that the missing blocks locations are given.

then transmit one bit per block, indicating the presence of tex-
ture or structure. This entails the overhead of one extra bit per
block.) At the core of this classification, is the method proposed
in [12],4 which inspired the approach here presented. To de-
termine whether or not a block has texture (or noise), we use
a simple coarseness measure given by the number of local ex-
trema in the neighborhood of the lost block. The number of local
extrema are simply the pixels which are local row extrema as
well as local column extrema.

Using the method of [12], the number of local extrema in a
window of side is given by

(1)

where and are respectively the upper and lower bounds
for texture coarseness and are selected by the user. These coarse-
ness values vary from 0 (no extrema) to 1 (all pixels in the se-
lected window are extrema). We have used and

as suggested in [12]. In this implementation, ,
giving . Thus, if a 8 8 block has fewer than extrema,
it is classified to have structure, else is considered to contain tex-
ture (which includes noisy blocks).

The above technique is applied for each available block of
8 8 pixels in the immediate neighborhood of the lost block.
Even if a single block from this neighborhood contains struc-
ture, we first consider a decision in favor of structure. However,
reconstruction being our primary goal, this criteria alone might
be insufficient, as we illustrate now. Consider for example that
we have lost a block containing an edge between two textured
regions. The edge between two regions is certainly an expres-
sion of structure, and needs to be given precedence over tex-
ture even if the block in question has more than the necessary
coarseness. The logic behind this will be understood in the next
section, wherein, we require the textured region surrounding the
block to fill it up. If we were to classify a block containing an
edge as texture, we would not be able to reconstruct the edge
later, as will become clear after examining the texture synthesis
algorithm.

To overcome this limitation, we impose an additional con-
straint as follows. We consider the 8-neighborhood of a 88
block and calculate differences between the average values of
the blocks on opposite sides of the center block (considering
only available blocks). If the four resulting differences are above
a threshold, we decide that an edge does indeed pass through
the textured block. We then designate the block as structure,
notwithstanding its high coarseness. This simple additional con-
straint has provided a correct classification in all tested images.

B. Texture Synthesis

From the earlier classification, we conclude that when a block
is classified as having texture, the entire 8-neighborhood of that
block has texture. The missing block is then filled-in with the
texture from its surrounding, following [5].

Let the region to be filled be denoted by. The lost block
will now be filled, pixel by pixel, in a raster fashion. Let be a

4A similar method was used by the research group at the Navy facilities in
China Lake (C. Schwartz, personal communication).
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Fig. 2. Reconstruction results for 1, 2, or 3 contiguous lost blocks.

Fig. 3. Reconstruction results for more drastic losses.

representative template touching the left of a pixel .
We proceed to find a from the available neighborhood, such
that a given distance is minimized. As per [5], is a
normalized sum of squared differences (SSD) metric. Once such
a is found, we choose the pixel to the immediate right of,
as our candidate for . For stochastic textures, the
algorithm selects at random one of the pixels neighboring.

The template can be a simple seed-block of 33 pixels
as shown in Fig. 1. Then, of all possible 33 blocks in the
8-neighborhood, the one with the minimum normalized SSD is
found and a pixel to its right is copied into the current pixel in the
lost block, as shown. This algorithm is considerably fast when
using the improvements in [13], [14].

C. Image Inpainting

Structure in an image can be an edge between two regions or
a deterministic change in color or gray value. When the block
classification algorithm detected a structured block, this is re-
stored using the digital inpainting procedure introduced in [4].

Once again let be the region to be filled in (inpainted) and
be its boundary. The basic idea in inpainting is to smoothly

propagate the information surroundingin the direction of the
isophotes entering . Both gray values and isophote directions
are propagated inside the region. Denoting bythe image, this
propagation is achieved by numerically solving the partial dif-
ferential equation (is an artificial time marching parameter)

where , , and stand for the gradient, Laplacian, and or-
thogonal-gradient (isophote direction) respectively. This equa-
tion is solved only inside , with proper boundary conditions in

for the gray values and isophote directions.
Note that at steady state, , and .

This means that is constant in the direction of the
isophotes, thereby achieving a smooth continuation of the
Laplacian inside the region to be inpainted.
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Fig. 4. Reconstruction misses details smaller than the mask.

For details on the numerical implementation of this in-
painting technique, which follows the techniques introduced
in [15], [16], as well as numerous examples and applications,
see [4].

IV. EXPERIMENTAL RESULTS

A. Application to Wireless Transmission of JPEG Compressed
Images

Throughout our experiments, we have assumed, though it is
not completely necessary, that the average (dc) value of a 88
block is known at the receiver. This is not needed by the block
reconstruction algorithm, but it is needed for the available sur-
rounding blocks due to the differential encoding of dc values in
JPEG. In case the dc value is not known, the method proposed
in [17] gives a technique to estimate and correct the dc value of
the lost block and the following blocks in the same line. Retrans-
mission of the dc value of a lost block would not be a significant
overhead either, since we just need 1 byte to be retransmitted per
block.

Since we have no control over the fading channel, there is
no prior information about the relative locations and number of
blocks that can be lost in the process. We present various exam-
ples ranging from low to drastic losses of image information,
and demonstrate our proposed technique to restore the lost infor-
mation. Figs. 2–4 show the results of reconstruction (from left
to right, transmitted, received, and reconstructed image). Table I
shows the amount of missing data along with the PSNR values
after reconstruction. We can make the following observations.

a) When single blocks are missing from the image, they are
satisfactorily reconstructed from the surrounding context. Note
how the reconstructed image is almost identical to the original
one, as expected from the algorithms used for filling-in.

b) When a few contiguous blocks are missing, the algorithm
still reconstructs the blocks so as to be visually unrecognizable
from the original.

c) As a drastic condition, if an entire line is missing, then,
a good reconstruction is not always possible. See Fig. 3. This

TABLE I
PERCENTDATA LOST AND PSNR VALUES AFTERRECONSTRUCTION

is mainly due to the fact that most probably such a significant
loss will cover entire objects. In general, when feature sizes are
smaller than 8 8 pixels or are totally covered by the missing
line, it will be impossible to reconstruct the image correctly. See
Fig. 4. In such cases, we will be forced to request retransmission
of the lost block (or an error block). Such instances will be-
come increasingly rare when the image resolution is increased.
Further, as explained in Section II, if the packetization in [2] is
used, then it is extremely rare to lose an entire line in the image
domain. In that case, only independent lost blocks would need
to be reconstructed from their neighborhood, and as indicated
by Figs. 2 and 3, the above algorithm restores isolated blocks
reliably.

B. Application to Image Compression

Since inpainting faithfully reproduces lost edges, and texture
synthesis faithfully grows lost textures, we can afford to volun-
tarily remove some blocks containing structure and texture, even
prior to compression. Afterintentionally removing the blocks
and replacing them with their dc values, we compress the image
using lossy JPEG with default settings. Finally, when the image
is decompressed, the above algorithm is used to reconstruct the
“lost” blocks.5 This improves the compression ratio provided
by lossy JPEG. In this situation, we have the freedom to choose
the blocks which we want to remove, and later reconstruct. A

5As in the wireless scenario, we assume that the positions of the lost blocks
are known, since many simple strategies can be devised to automatically detect
this position (e.g., blocks with only dc as nonzero coefficients). We also auto-
matically detect the block type, as before, so no overhead is needed at all.
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Fig. 5. Stages in compression of 256� 256 Lena image.

common fixed mask to remove blocks from all images is not
advisable of course, since for example, it may totally obliterate
important details in images where feature sizes are less than 8

8 pixels, and hence cannot be reconstructed later.
The objective is to retain only the information whichcannot

be correctly reconstructed (minute but important details) and to
remove as much as possible from the remainder of the image.
The problem thus reduces to finding the best possible mask for
a given image. Following the earlier distinction between texture
and structure, our algorithm uses the following general rules to
construct the mask automatically (see also concluding remarks):

a) For areas of texture, remove as many blocks as possible,
since they can be satisfactorily reconstructed from a single seed
block.

b) Remove a few, but not all blocks along an edge, so that
the direction of the edge is properly preserved. Ideally, alternate
blocks along an edge should be removed. Presently, a block con-
taining an edge is masked only if the regions on either side of
the edge are flat, i.e., the gradient is steep on both sides of the
block. This is done, because, while experimenting with various
cases in Section IV-A, it became clear that such edges are best
reconstructed by inpainting.

c) For blocks with smooth variations (i.e., structure without
edges), remove alternate blocks. Inpainting always restores
these smooth variations.

Fig. 5 shows how the algorithm is used in conjunction with
lossy JPEG. Note that the image quality is very similar to the
case in which JPEG alone is used. Other examples are shown
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Fig. 6. Other examples (1)—Result after decompression of 512� 512 peppers image.

Fig. 7. Other examples (2)—Result after decompression of 512� 512 jet image.

TABLE II
IMPROVEMENT IN COMPRESSIONRATIO

in Figs. 6 and 7. The mask is found automatically by the algo-
rithm from the image and the output of a Canny edge detector.

The bits per pixel (BPP) and compression ratio (CR) obtained
by lossy JPEG alone, and the compression ratio obtained using
JPEG with the above algorithm, are shown in Table II. Note once
again that no overhead is needed by the proposed compression
strategy, and the bitstream it is fully JPEG compliant.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have proposed a new technique for the
filling-in of missing blocks in wireless transmission of JPEG
(or block based) compressed images. We have shown that as
long as the features in the image are not completely lost, they
can be satisfactorily reconstructed using a combination of com-
putationally efficient image inpainting and texture synthesis
algorithms. This eliminates the need for retransmission of lost
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Fig. 8. Using information from blue component to reconstruct lost blocks in red component.

blocks. When the image resolution is increased, the quality of
reconstruction improves and a retransmission request is rarely
required, resulting in a better effective data transmission rate.

Further, by intentionally (and automatically) dropping image
blocks, and using this filling-in approach, we can improve the
compression ratio provided by lossy JPEG, without altering the
existing JPEG algorithm. As seen in Table II, the improvement
in compression ratio becomes more significant as the image res-
olution is increased.

A number of research directions should be taken following
the results reported here. We have tried to use image-dependent
information, i.e., texture and structure, to enhance the perfor-
mance of JPEG. The compression ratio can be further increased
by finding bettermasks by providing more image information.

In a more general setting, the extension of the approach pre-
sented here, to color data needs to be investigated. Since the
missing blocks in the different channels need not be in the same
image position, information from different channels can be used
in the block classification and reconstruction. Adding this to the
current neighboring information used is expected to improve
even further the quality of the results. A preliminary example
is presented in Fig. 8. Further results on this will be reported
elsewhere.
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