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Abstract

We consider a first-order Markov source, which is predictively encoded using
a DPCM-style encoder. The quantized compressed prediction residual is trans-
mitted over an erasure channel. Additionally, a Wyner-Ziv encoded version of
the prediction residual is transmitted in order to provide error resilience. When
the symbols from the first transmission are erased by the channel, this second
description is decoded, and limits the maximum distortion that can occur. Since
the quantization step size used in the second description is, in general, larger
than that used in the main transmission, error protection is lossy. Using high-
rate quantization theory, we derive expressions for the rate and the end-to-end
distortion incurred by this system. We show that, compared to conventional
lossless forward error correction, this lossy error protection scheme is robust in
the sense that it allows the received signal quality to degrade gracefully when
the erasure probability increases.

1 Introduction

Consider a communication scheme in which a source, typically an image or video or
audio signal, is compressed and transmitted over a lossy channel which drops some of
the packets. Without error correction, this would result in an increase in the distortion
of the decoded signal. Forward Error Correction (FEC) adds a specified amount of
redundant information to protect the compressed bit stream from channel errors.
When a systematic channel code is used, the FEC parity data can be considered
as a separate bit stream that provides error resilience. Shamai, Verdú and Zamir
studied a more general transmission scheme known as systematic lossy source-channel
coding [1], in which the added redundancy protects the waveform of the transmitted
signal, rather than the bit stream itself. In their formulation, an analog signal is
transmitted uncoded over an error-prone channel. The received version of the signal
is degraded by channel errors. To provide error resilience, a separate bit stream
is generated using Wyner-Ziv coding [2] of the input signal. The Wyner-Ziv bit
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stream is decoded at the receiver using the degraded analog signal as side information.
Depending upon the point chosen on the (operational) Wyner-Ziv rate-distortion
curve, this scheme provides a trade-off between the amount of error resilience desired
and quality of the final decoded signal.

Inspired by [1], a practical scheme for error resilient transmission of compressed
video signals, called Systematic Lossy Error Protection (SLEP), was proposed in [3, 4].
By using Wyner-Ziv coding, SLEP has been shown to provide a graceful trade-off
between error resilience and decoded picture quality, effectively mitigating the “cliff”
effect observed in FEC-based systems.

In this work, we study a SLEP scheme which is simple enough for a closed-form
mathematical analysis. We consider robust transmission of a first-order Markov
source over an erasure channel. The source is compressed by a first-order DPCM
coder. The prediction residual is quantized, entropy-coded and transmitted over an
erasure channel. For error resilience, we requantize the prediction residual and use
Wyner-Ziv coding to mitigate the effect of erasures on the distortion in the transmit-
ted signal. We derive expressions for the total rate and the end-to-end distortion in
the decoded sequence.

The paper is organized as follows: The DPCM source coding scheme is described
in Section 2, followed by the Wyner-Ziv coding scheme in Section 3. The high-rate
rate-distortion functions for this scheme are derived in Section 4. A comparison of
SLEP with traditional FEC is performed in Section 5, and concluding remarks are
presented in Section 6.

2 DPCM source coding scheme

We now describe the encoding and decoding scheme for the systematic transmission.
In addition, we detail the assumptions on the source data and the coding operations,
which will be used to obtain the expressions for rate and distortion:

1. Source data: The encoding scheme is shown in Fig. 1. The source data is
represented by (Xn)n∈Z, a zero-mean, stationary, first-order Markov process.

2. Prediction residual: We consider a simple linear predictor Xn = ρ X̂n−1 +
Wn, where |ρ| < 1, and Wn represents the unpredictable component, i.e., the
prediction residual. In this example, ρ is the correlation coefficient between
Xn and Xn−1, and ρXn−1 is the best linear unbiased estimate of Xn given
Xn−1. Note that in the DPCM encoder, we predict Xn from the reconstructed
sample X̂n−1 and not from Xn−1. At high rates, the quantization of Wn is fine
enough so that Xn ' X̂n. Therefore, we immediately become less formal and
say that the Wn are i.i.d. and independent of the past values of the source
data Xn−1, Xn−2.... This situation occurs, for example, when the source data
are produced by a first-order Gauss-Markov process. Note that whenever a
variable, or a difference of variables, is identically distributed, we will drop the
time index n.
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DPCM coding and systematic transmission

Wyner-Ziv coding for error resilience

Figure 1: Systematic lossy error protection applied to the prediction residual signal
of a DPCM coding scheme.

3. Quantization of prediction residual: The quantizer q1(w) maps the predic-
tion error W into the quantization index Q1, which is compressed by an ideal
entropy coder. Thus, the source coding bit rate is R1 , H(Q1). The codewords
generated by the entropy coder are transmitted across an error-prone channel.
The reconstruction of W corresponding to the index Q1 is Ŵ = E[W |Q1]. Mean
squared error (MSE) is used as the distortion measure, thus the expected source

coding distortion in W is D1 , E(W − Ŵ )2.

4. Using local reconstructions as reference samples: The encoder’s local
reconstruction of Xn, to be used for predictive encoding of the future samples,
is given by X̂n = ρ X̂n−1 + Ŵn. Note that, in the absence of channel errors,
the receiver would recover the quantization indices and obtain X̂n exactly, and
there would be no mismatch between encoder and decoder. i.e., E(X − X̂)2 =

E(W − Ŵ )2 = D1.

3 Wyner-Ziv coding of the prediction residual

We assume an erasure channel in this work. Specifically, the codewords generated
by the entropy coder are erased with probability p. The process causing the erasures
is assumed to be independent of the source statistics. At the receiver, reversing
the entropy coding operation yields either the quantization index Q1, or an erasure
(denoted by the symbol e). Thus, the side information for the Wyner-Ziv decoder is:

Y =

{
Q1 w.p. 1− p
e w.p. p

(1)

With no error protection in the case of an erasure, the best possible reconstruction of
W is E[W |e] = E W = 0, which would result in a MSE in W of σ2

W , the variance of
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W . Because of the predictive coding structure, this error energy will propagate to the
subsequently decoded samples. To mitigate this error propagation, SLEP transmits
additional symbols generated by distributed coding of the prediction residual. The
Wyner-Ziv coding procedure is as follows:

1. Quantization: First, the prediction residual is requantized. Specifically, let
the quantizer q2(q1) map the quantization index Q1 from Fig. 1 into the quanti-
zation index Q2. Thus, q1(w) is embedded inside q2(q1(w)). The corresponding

reconstruction levels for W are given by
̂̂
W = E[W |Q2].

2. Slepian-Wolf coding: Now, ideal lossless encoding of the quantization indices
Q2 is performed assuming the presence of side information Y at the decoder.
Note that the statistics of Y are known to the Slepian-Wolf encoder, but the
actual value of Y is unknown. With ideal Slepian-Wolf encoding [5], the bit
rate required would be H(Q2|Y ). However, the Slepian-Wolf code is transmitted
over an erasure channel. In order to ensure that the Slepian-Wolf codewords
can be recovered in spite of these erasures, the bit rate must be increased to
R2 > H(Q2|Y ). R2 will also be referred to as the error resilience bit rate or
the Wyner-Ziv bit rate. At the receiver, Slepian-Wolf decoding returns the
quantization index Q2.

3. SLEP decoding: Let W̃ denote the output of the SLEP decoder. We now
define the operation of the SLEP decoder, i.e., its response to erasures that
may occur on both the systematic and the Wyner-Ziv transmissions. If there is
no erasure on the systematic transmission, it means that the side information
Y = Q1 and no error has occurred. In this case, the output is defined to be
W̃ = Ŵ = E[W |Q1]. If there is an erasure on the systematic transmission,

Wyner-Ziv decoding must be performed and the output is given by W̃ =
̂̂
W =

E[W |Q2, e] = E[W |Q2], because the erasure provides no information about W .
To summarize, the output of the SLEP decoder is given by:

W̃ = E[W |Q2, Y ] =

{
Ŵ if Y = Q1

̂̂
W if Y = e

(2)

We emphasize that, owing to requantization, the Wyner-Ziv representation has
lower quality compared to the main transmitted signal, and will only be called
upon when the main prediction error signal is lost. Owing to the embedding
of the quantizers, E[W |Q1, Q2] = E[W |Q1]. This justifies the above decoding

strategy, since W̃ is the optimal reconstruction of W in the MSE sense. In this
simple setup, SLEP is the same as unequal error protection of the prediction
error, in which the higher significant bit-planes in the binary representation of W
are protected, while lower significant bit-planes are not. Since the error process
of the channel is independent of the prediction and quantization operations, W̃n

is i.i.d. and the subscript n has been omitted. The MSE distortion in W , after
SLEP decoding, is D2 , E(W − W̃ )2.
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4 Rate-distortion tradeoffs in SLEP

As shown in Fig. 1, the final goal is to reproduce Xn. This final reproduction, denoted
by X̃n, is obtained by reversing the prediction process at the encoder. Thus, X̃n =
ρX̃n−1 + W̃n. Our goal is to obtain an expression for the total rate, defined as
R , R1 + R2 and the end-to-end distortion, defined as D , E(X − X̃)2. Please

refer to Lemmas 4 and 5 in the appendix for an explanation of why Xn, X̃n and the
difference Xn − X̃n are all identically distributed.

We assume that W is encoded at high rates. The results in this section hold if
the Bennett assumptions [6] apply to the probability density function fW (w). We
consider, in turn, the rate-distortion relation for the source coder of W , the rate-
distortion relation for the Wyner-Ziv coder of W , and the final expression for end-to-
end distortion in X.

Suppose that the statistics of W are such that the differential entropy h(W ) is
defined and finite. By a direct application of high rate quantization theory [7], an
asymptotically optimal scalar quantization strategy for the prediction residual W is
to perform uniform quantization with step-size ∆1, which satisfies, for large R1:

R1 ' h(W )− log2 ∆1 , D1 ' ∆2
1

12
, D1 ' 1

12
22 h(W ) 2−2R1 (3)

Note that, since W is encoded at high rates, ∆1 ¿ σW . We now obtain a rate-
distortion relation for the Wyner-Ziv coder.

Proposition 1. Suppose that the statistics of W are such that the differential entropy
h(W ) is defined and finite. Suppose also that asymptotically optimal scalar quantiza-
tion has been used in the systematic transmission. Then, an asymptotically optimal
scalar quantization strategy for the SLEP decoding procedure described in Section 3
is to perform uniform quantization of Q1 with step-size m, which satisfies, for large
R2, and ∆1 → 0:

R2 ' p

1− p
(R1 − log2 m) , D2 ' (1− p + pm2)D1 (4)

D2 ' (1− p + pm2)

m2

1

12
2 2 h(W ) 2−2R2

1−p
p

Proof. Since Q2 is obtained via requantization of the indices Q1, knowledge of Q1

unambiguously determines Q2. If there were no erasures in the Slepian-Wolf trans-
mission, then the error resilience bit rate would be given by the Slepian-Wolf theorem:

H(Q2|Y ) = (1− p) H(Q2|Q1) + p H(Q2|e) = 0 + p H(Q2) (5)

However, if there are erasures in the Slepian-Wolf transmission, then the Slepian-
Wolf theorem cannot be used directly because it assumes error-free transmission of
the Slepian-Wolf code1. To findR2, we use the analogy between the Slepian-Wolf code

1Intuitively, the error resilience bit rate R2 should be higher than the Slepian-Wolf bit rate
because we want the Slepian-Wolf code to provide protection not only against erasures in the DPCM-
coded transmission, but also against erasures in the transmission of the Slepian-Wolf codewords
themselves.
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and the parity portion of a systematic channel code. Consider a systematic channel
code in which both the source and the parity symbols are erased with probability p.
Let the parity portion of a capacity-achieving channel code be used as a Slepian-Wolf
code. Then, the parity bit rate, which equals R2 in the present problem, is given by:

R2 =
p

1− p
H(Q2) ' p

1− p
( h(W )− log2(m∆1)) =

p

1− p
(R1 − log2 m) (6)

Here, requantization to obtain Q2 is asymptotically equivalent to transcoding W using
a uniform quantizer with step-size ∆2 = m∆1, m ∈ Z+. We further claim that there
is no loss of optimality if m ∈ Z+ (instead of the more general claim that m ∈ R+).
For a given distortion, since ∆1 → 0, the increase in rate due to this introduced
gradation is arbitrarily small. Such a gradation gives points on the R2(D2) curve,
but these points are arbitrarily close at high rates, so we can take the rate-distortion
function to be asymptotically continuous. Further, (6) uses the result that a uniform
quantizer of width ∆2 = m∆1, without index repetition, is asymptotically optimal as
shown in [8].

The MSE distortion at the output of the Wyner-Ziv decoder is then given by:

D2 = E(W − W̃ )2 = (1− p) E(W − Ŵ )2 + p E(W − ̂̂
W )2 (7)

' (1− p)
∆2

1

12
+ p

m2∆2
1

12
' (1− p + pm2)D1 (8)

where (7) is obtained by iterated expectation, and (8) uses the distortions observed
at high rates for quantizers with step sizes ∆1 and m∆1.

For p = 0, we have D2 = D1,R2 = 0, confirming that no bits need to be spent
on error resilience for the error-free case. We now derive an expression for D, the
effective distortion in X as a result of the distortion in W , accounting for the effect
of error propagation from previously decoded samples.

Theorem 2. Consider a SLEP system in which the systematic transmission has
a rate-distortion relation given by (3) and the Wyner-Ziv transmission has a rate-
distortion relation given by Proposition 1. Then, the end-to-end mean squared error
distortion in X is given by:

D '
(

1 + p
m2 − 1

1− ρ2

)
m−2p 1

12
2 h(W )2−2R(1−p) (9)

Proof. Consider the error in the reconstruction of X at the decoder:

Xn − X̃n = (ρ X̂n−1 + Wn)− (ρ X̃n−1 + W̃n) = ρ (X̂n−1 − X̃n−1) + (Wn − W̃n) (10)

From Lemmas 4 and 5 in the appendix, the differences Wn − W̃n, Xn − X̃n,
X̂n−X̃n are stationary, and we can drop the time indices while writing the distortions.
Moreover, since W is i.i.d., the difference Wn − W̃n is independent of X̂n−1 − X̃n−1

Then, from (10),

D = E(X − X̃)2 = ρ2 E(X̂ − X̃)2 + E(W − W̃ )2 + 2 E(X̂ − X̃) E(W − W̃ )

= ρ2 E(X̂ − X̃)2 +D2 + 0 (11)
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where the last term vanishes because, by iterated expectation, E W̃ = E E[W |Q2, Y ] =
E W . Now consider the difference,

Vn = X̂n − X̃n = ρ (X̂n−1 − X̃n−1) + (Ŵn − W̃n) = ρ Vn−1 + Un (12)

Thus, the new random process Vn is obtained by passing a strict sense stationary zero
mean random process Un through a LTI filter 2. Then, from Lemma 6, we have,

E(X̂ − X̃)2 = σ2
V =

1

1− ρ2
σ2

U =
1

1− ρ2
E(Ŵ − W̃ )2 (13)

where the MSE in the right hand side can be evaluated as follows:

E(Ŵ − W̃ )2 = (1− p) E(Ŵ − Ŵ )2 + p E(Ŵ − ̂̂
W )2 ' 0 + p (m2 − 1)D1 (14)

The last term in (14) is the MSE between the reconstruction levels of the source quan-
tizer and Wyner-Ziv quantizer. For any m ∈ Z+, this MSE evaluates to (m2 − 1)D1.
This calculation is worked out in Proposition 7 in the appendix.

Substituting the expressions of (13) and (14) into (11), the end-to-end MSE dis-
tortion in X is given by

D ' ρ2

1− ρ2
p (m2 − 1)D1 +D2 =

(
1 + p

m2 − 1

1− ρ2

)
D1 (15)

This equation may be reduced to the form in the theorem statement by expressing D1

in terms of R1, and finally expressing R1 in terms of the total rate R. For p = 0, the
familiar high-rate result is obtained, with D reducing by 6.02 dB/bit. For non-zero
p, D falls at the rate of 6.02(1− p) dB/bit.

5 Observations on lossy versus lossless protection

The treatment in the earlier sections assumed that the erasure probability is known.
Now consider the case in which R2 is set to allow error protection for any erasure
probability p ≤ p

cliff
. In that case, we can write the overall distortion in X as:

D '



D1

(
1 + p m2−1

1−ρ2

)
if p ≤ p

cliff

D1

(
1 + p

(σ2
W /D1)−1

1−ρ2

)
if p > p

cliff

(16)

where the distortion for p ≤ p
cliff

is obtained from (15). The distortion for p > p
cliff

can be obtained by repeating the steps in the proof of Theorem 2 noting that erasure
protection fails for p > p

cliff
, and so the minimum MSE reconstruction of W is not

̂̂
W but E W . From (16), notice that D has a discontinuity at p = p

cliff
because

m2D1 ¿ σ2
W at high rates. Now we compare SLEP (m > 1) against lossless forward

error correction (m = 1) in two scenarios:

2The stationarity of Un = Ŵn − W̃n arises from the initial assumptions on W and X and is a
consequence of Lemma 4 in the appendix
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(a) Fix R1 = 5 bits, R2 = 1 bit, vary m
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(b) Fix R = 6 bits, pcliff = 0.3, vary m

Figure 2: The end-to-end distortion D is evaluated for the case where source data
X are generated by a first-order Gauss-Markov process with ρ = 0.75 and σ2

W = 5.
(a) For a fixed error resilience bit rate, SLEP provides graceful quality degradation
over a wider range of erasure probabilities than FEC. (b) If the maximum erasure
probability is fixed, then SLEP allocates a larger fraction of the total bit rate R to
source coding, incurring less distortion than FEC in the erasure-free case.

1. The bit rates R1 and R2 are fixed. Let p
cliff,m

, indexed by m = ∆2/∆1 ∈ Z+,
be the maximum erasure probability at which the system can provide error
protection. Using (4), we have p

cliff,m
≥ p

cliff,1
. Thus, SLEP provides erasure

protection over a wider range of erasure probabilities compared to FEC. As
shown in Fig. 2(a), the distortion for FEC is constant for p ≤ p

cliff,1
and increases

rapidly for p > p
cliff,1

owing to the failure of the channel code. This is the
familiar “cliff effect”. In SLEP, the distortion increases gracefully owing to
coarse quantization, as long as p ≤ p

cliff,m
. Moreover, the cliff in SLEP is

pushed further to the right, as compared to FEC. The larger the value of m,
the greater the robustness of the error protection scheme.

2. The total bit rate R is fixed and the system is designed to tolerate a fixed
maximum erasure probability p

cliff
. Let R1,m and R2,m be the optimally chosen

source coding bit rate and error resilience bit rate, depending upon the value of
m. From (4) and the total bit rate constraint, R1,m ≥ R1,1 and R2,m ≤ R2,1.
Thus, SLEP allocates more bits to the source code than FEC. For p = 0,
the erasure-free case, the SNR with SLEP is higher than that with FEC by
20p

cliff
log10 m dB. As shown in Fig. 2(b) for 0 ≤ p ≤ p

cliff
, FEC incurs constant

distortion, while the distortion of SLEP increases with p. The system design
ensures that the cliff occurs at probability p = p

cliff
for both FEC and SLEP. It

can be shown that the distortion plots for FEC and SLEP must cross at:

p =
(1− ρ2)(m2p

cliff − 1)

m2 − 1
< p

cliff
for m > 1
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6 Conclusion

We have analyzed a simple error-resilient codec in which a first order Markov source
is predictively encoded and transmitted over an erasure channel. In addition, a bit
stream generated by Wyner-Ziv coding is used to provide lossy error protection.
Using high-rate quantization theory, closed form expressions for rate and distortion
have been derived for the encoding of the prediction residual and the overall encoding
of the Markov source. Using these relations, it is shown that the lossy error protection
property can be used to provide graceful degradation over a wider range of erasure
probabilities compared to a lossless error correction approach like FEC.

Appendix

The following results are well-known and are provided for the sake of completeness in
order to fill in the details in the proofs sketched in the main body of the paper. All
references to stationarity will mean stationarity in the strict sense.

Definition 3. (Un)n and (Vn)n are defined to be jointly stationary processes if and
only if the joint process (Un, Vn)n is stationary.

Lemma 4. If (Un, Vn)n is stationary, then (Un − Vn)n is stationary.

Recall, in the DPCM encoder, Wn is i.i.d. Then, by the above definition, Wn, Ŵn,
̂̂
W n, and W̃n are jointly stationary. By Lemma 4, the differences Wn−Ŵn, Wn− ̂̂

W n,
Wn − W̃n are all stationary.

Lemma 5. If Un is stationary, and Vn = h ∗ Un, where h is the impulse response of
a stable Linear Time Invariant (LTI) system, then (Un, Vn)n is stationary.

By the above lemma (Xn, X̂n, X̃n)n = h ∗ (W, Ŵ , W̃ )n is stationary, because
h(n) = ρnu(n) with |ρ| < 1 to ensure stability. By Lemma 4, this implies that

Xn − X̂n is also stationary. Similarly, it may be shown that the differences, X̂n − X̃n

and Xn − X̃n are stationary. Therefore, the functionals D,D1,D2,R,R1,R2 may be
defined by dropping the time index n.

Lemma 6. Let Vn = ρ Vn−1 + Un, where |ρ| < 1 and (Un)n is a stationary zero mean
process with Un independent of the past values Vn−k, k ∈ Z+. Then E V = 0 and

σ2
V =

σ2
U

1−ρ2 .

Proposition 7. Consider the embedded quantization scheme for quantizing W in
which m = ∆2

∆1
∈ Z+. Then, the MSE between the reconstruction functions of the

finer quantizer and the coarser quantizer is given by

E( Ŵ − ̂̂
W )2 = (m2 − 1)

∆2
1

12
' (m2 − 1)D1 (17)
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Wyner-Ziv
quantizer

reconstruction levels

Figure 3: Embedded quantization (successive degradation) of W with m = ∆2/∆1 =
7. Embedding increases the MSE by a factor of (m2 − 1)

Proof. We prove the result for odd valued m. Note that the proof for even m follows
the same method. By the high-rate assumption, W is approximately uniformly dis-
tributed over the width of the bins. Fig. 3 shows the embedded quantization scenario
for m = 7. In this case,

E( Ŵ − ̂̂
W )2 =

2

m

m−1
2∑

i=1

i2∆2
1 = (m2 − 1)

∆2
1

12
' (m2 − 1)D1
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