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Privacy-Preserving Nearest Neighbor Methods

Shantanu Rane and Petros Boufounos

Comparing two signals is one of the most essential and prevalent tasks in signal processing.

A large number of applications fundamentally rely on determining the answers to the following

two questions: (1) How should two signals be compared? (2) Given a set of signals and a query

signal, which signals are the nearest neighbors of the query signal, i.e., which signals in the

database are most similar to the query signal?

The nearest neighbor (NN) search problem is defined as follows: Given a set S containing

points in a metric space M, and a query point x 2 M, find the point in S that is closest to

x. The problem can be extended to K-NN, i.e., determining the K nearest neighbors of x. In

this context, the ‘points’ in question are signals, such as images, videos or other waveforms.

The qualifier ‘closest’ refers to a distance metric, such as the Euclidean distance or Manhattan

distance between pairs of points in S . Finding the nearest neighbor of the query point should be

at most linear in the database size and is a well-studied problem in conventional NN settings.

However, this problem much less straightforward when the signals under consideration are

private, i.e., they cannot be revealed to the party conducting the NN search. At first glance, the

problem appears to be a non-starter when privacy constraints are imposed: Is it even possible

to find the distance between two signals without knowing what the signals are? Is it possible

to determine the minimum of these distances without knowledge of the distances themselves?

Fortunately, the answer to both these questions is affirmative. The intent of this article is to
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Fig. 1. A PPNN protocol can be broken down into two privacy-preserving protocols.
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provide a tutorial survey of the methods that have been developed to answer these questions, i.e.,

to solve the NN search problem under a variety of privacy constraints.

While thinking of a Privacy-Preserving Nearest Neighbor (PPNN) method, the reader will find

it convenient to divide it into two distinct problems: a method for Privacy-preserving (PP) distance

computation followed by a method for PP minimum finding, as shown in Fig. 1. PPNN problems

arise repeatedly in many of today’s emerging applications: secure biometric authentication [1, 2],

privacy-preserving face recognition [3, 4], private recommender systems [5], privacy-preserving

speech processing [6], and many others.

The choice of mathematical tools used for PPNN, as well as the structure and complexity

of the resulting protocols are dictated by the privacy model under consideration. These models

encapsulate assumptions such as the privacy requirements, the behavior of participating entities

and the possibility of information sharing among the participants.

The privacy guarantee can be based on the assumption that certain problems in number theory,

e.g., factorization of large numbers, are intractable for an adversary with limited computational

resources. It is important to note that many of these assumptions are hitherto unproven, and

that a computational privacy guarantee may be vulnerable to a quantum computer in the future.

A more powerful privacy guarantee, based on information theory, ensures that an adversary

cannot compromise privacy of any party without knowing a specific key, even if he has unlimited

computational resources. In this article, we cover examples of both kinds of cryptographic tools,

i.e., we consider both computationally private and information-theoretically private protocols.

The parties in a privacy-preserving protocol may behave in a honest but curious fashion, i.e.,

they may follow the rules of the protocol, but can use all the information made available to them

by the protocol and try to guess the data held by other parties. A more severe assumption on

the behavior of the parties is that they may be malicious, i.e., they may arbitrarily deviate from

the rules of the protocol with the aim of discovering data held by other parties. Furthermore,

two or more parties in a protocol may choose to collude with the goal of forcing the protocol to

generate a wrong result, or to compromise the data owned by an unsuspecting party. Naturally,

it is more difficult to design protocols that are secure against colluders and malicious parties.

In this article, we will concentrate primarily on honest but curious parties—also called semi-

honest parties—for two reasons: Firstly, much of the recent surge of secure signal processing

research has considered semi-honest, non-colluding parties. Secondly, our goal with this paper

is to provide a clear understanding of the basic methods and tools for PPNN protocol design.
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Many of these methods can later be strengthened to accommodate malicious adversaries via

verifiable secret sharing and zero knowledge proofs, if the steep increase in protocol complexity

is acceptable.

The remainder of this article is organized as follows: In the next section, we describe PPNN

tools and protocols in which privacy guarantees are based on computationally intractable prob-

lems. Following this section, we describe PPNN tools and protocols with information-theoretic

privacy. Then, we discuss the important role that dimensionality-reducing embeddings play in

PPNN, either by reducing the complexity of previously discussed cryptographic protocols, or by

providing privacy guarantees of their own. Towards the end of the article, we briefly discuss

the design of protocols resistant to malicious colluders and discuss the most interesting open

problems in the field.

I. PPNN WITH COMPUTATIONAL PRIVACY

The first class of PPNN methods that we describe is the class of computationally private NN

protocols which leverages several interesting advances made in cryptography during the past two

decades. The characteristic feature of these methods is that signals are kept private from other

parties by means of encryption, and computations needed for the two tasks shown in Fig. 1

are performed in the encrypted domain. Thus, the first task is to compute encrypted distances

between a pair of signals held by mutually untrusting parties, e.g., a client with a query signal

x and a server with a database signal y(i), as shown in Fig. 2. The second task is, given a

set of encrypted distances at the server, to find which one is the smallest, thus providing the

nearest neighbor y(NN). Below, we describe various tools for computationally private multiparty

computation—homomorphic cryptosystems, oblivious transfer, and garbled circuits—that are used

to accomplish these two tasks.

A. Tools for Computational Privacy

The principal cryptographic tool to perform encrypted-domain distance computation is a public-

key homomorphic cryptosystem. A homomorphic cryptosystem has the property that the encryp-

tion of a function of some variables can be computed by performing operations on the encryptions

of the variables. For example, in an additively homomorphic cryptosystem, encryption of the

sum of two variables is computed simply by multiplying individual encrypted variables. More
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precisely, denoting the encryption function by E(·), an additively homomorphic cryptosystem [7–

9] satisfies, for integers a, b,:

E(a) · E(b) = E(a + b) and (E(a))b = E(ab)

Several other flavors of homomorphic cryptosystems have been designed, based on compu-

tationally intractable problems such as inverting a discrete logarithm, determining N -residues

modulo N
2, factorizing large numbers, etc. In a multiplicatively homomorphic cryptosystem [10],

encryption of the product of plain text values is computed by multiplying individual encrypted

values. Yet another scheme allows the encryption of a quadratic function of the plaintexts to

be computed from individual encrypted values [11]. One of the most spectacular results in

cryptography in recent times has been a constructive proof of the existence of fully homomorphic

encryption [12] which enables computation of encryptions of arbitrary polynomial functions of

several variables. Fully homomorphic cryptosystems are based on integer lattices and are currently

very complex to implement, but their simplification for practical usage is an extremely active

research area today. For more information, the reader is referred to [13] and a companion article

in this issue [14].

We will adopt additively homomorphic cryptosystems in our explanation because they have

been among the first cryptosystems leveraged for PPNN [15, 16]. Furthermore, while the number-

theoretic properties that enable additive homomorphisms are somewhat involved, the operations

on the ciphertexts are straightforward enough to convey an understanding of the typical data

manipulation steps in cryptographic PPNN protocols. In the remainder of this section, we assume

that the client and the server in Fig. 2 use a public key additively homomorphic cryptosystem.

Given a set of encrypted distances at a server, selecting the nearest neighbor involves first

finding the smallest of these distances, and then transferring the data point corresponding to the

smallest distance to the querying client. Performing these tasks requires a cryptographic primitive

protocol known as Oblivious Transfer (OT) [17], a technique that dates back to the beginnings

of secure computation research. Suppose Alice has a bit b 2 {0, 1} and Bob has data (m0, m1).

Then 1-out-of-2 OT, the most basic kind of OT, accomplishes the following: At the end of the

protocol, Alice receives mb, while not discovering m
b̄
. Bob does not discover the value of b,

thus he does not know which element of his vector has been revealed to Alice. Since OT is one

of the most fundamental protocols in secure computation—even beyond our PPNN problem—

we present an example implementation of 1-out-of 2 OT in Sidebar 1, based on homomorphic
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Inputs: Alice has b 2 {0, 1}, Bob has (m0, m1).

Output: Alice obtains mb, Bob obtains nothing.

Protocol: OT can be implemented with an additively homomorphic cryptosystem as follows:

1) Alice generates homomorphic encryptions E(b̄) and E(b) and sends them to Bob.

2) Bob cannot decrypt these cipher texts. He computes E(b̄)m0E(b)m1 = E(b̄m0 + bm1) and

sends it to Alice.

3) Alice decrypts Bob’s transmission to obtain b̄m0 + bm1, which is precisely equal to the

desired mb.

The aim above was to show that the OT problem is indeed solvable using the number-theoretic

properties of cryptosystems. Many other implementations of OT are possible, notably using

traditional public-key cryptography and garbled circuits.
Sidebar 1: Implementations of Oblivious Transfer.

encryption. 1-out-of-2 OT and its generalization to k-out-of-n OT are used when the client wants

to obliviously recover nearest neighbors without discovering the far neighbors stored at the server.

It has been shown that OT is a sufficient primitive for secure function computation, i.e., if

we can construct an algebraic circuit whose inputs correspond to the data owned by mutually

untrusting parties, and whose output corresponds to the function of interest, then OT can be

used to compute the function while preserving all privacy constraints [18, 19]. In principle, this

can be accomplished by executing a 1-out-of-2 OT for every wire of the circuit. More pertinent

to our subject, OT can be used to construct a “secure millionaire” protocol [17]: given two

inputs a and b held by untrusting parties, the protocol reveals which party has the greater value,

without revealing the individual values. The secure millionaire protocol, or some variant of it,

is ubiquitous whenever comparisons, maximum-finding or minimum-finding must be carried out

under privacy constraints.

B. Binary Hamming Distance Computation

Suppose that x,y are length-n binary vectors owned by the client and server respectively.

The goal is for the server to compute the encryption of the binary Hamming distance given

by dH(x,y) =
P

n

i=1 xi � yi, where � is the binary XOR operation. In this and the following

examples, assume that both client and server possess a public encryption key for an additively

homomorphic cryptosystem, however, only the client possesses the private decryption key, i.e.,



6

x

E(x)

."."."
E

�
y(NN)

�

y(1)

y(2)

Fig. 2. A thin client interacts with a server using a cryptographic protocol to find the signal in the server’s database

that is closest to its own signal.

the protocols are based on the public/private key-pair of the client. To begin, the client transmits

n elementwise encryptions E(xi) to the server. To compute the encrypted Hamming distance,

the server computes
nY

i=1

E(xi)E(yi)E(xi)
�2yi =

nY

i=1

E(xi + yi � 2xiyi) =
nY

i=1

E(xi � yi) = E

 
nX

i=1

xi � yi

!

which is the desired result. Note that the server need only compute the first expression using

the encryptions E(xi) received from the client, encryptions E(yi) calculated at the server, and

plaintext values of yi that are available to it. The additive homomorphic property ensures that

the result of that computation is the encrypted Hamming distance.

C. Squared Euclidean Distance Computation

Making a small change from the above, suppose that x,y are length-n integer vectors owned

by the client and server respectively. The goal is for the server to compute the encryption of the

squared Euclidean distance, which is given by dE(x,y) =
P

n

i=1(xi � yi)2. Again, as explained

above, the client transmits n elementwise encryptions E(xi) to the server. In addition, it also

transmits the encrypted summation E(
P

n

i=1 x
2
i
) to the server, which then computes

E

 
nX

i=1

x
2
i

!
E

 
nX

i=1

y
2
i

!
nY

i=1

E(xi)
�2yi = E

 
nX

i=1

(xi � yi)
2

!

which is the desired distance. It is easy to extend this method to compute a weighted version of

this distance measure. Thus, for a public weight vector w, a distance of the form dE(x,y,w) =
P

n

i=1 wi(xi � yi)2 can be computed privately using homomorphic properties.

D. Edit Distance

So far, we have restricted x and y to have equal lengths, but encrypted-domain computation

techniques based on homomorphic cryptosystems are powerful enough to tackle distances between
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Fig. 3. An example of edit distance computation, in which “FAST” is one of strings owned by the server and “FIRST”

is a string owned by a querying client. In this asymmetric setup, only the client possesses a decryption key for an

additively homomorphic cryptosystem. The server computes encryptions of L(i, j) via an interactive privacy-preserving

protocol.

sequences of unequal lengths. Suppose the client possesses a m-length sequence x and the server

possesses an n-length sequence y, where each element of the sequences belongs to a finite

alphabet set A. Examples of A include {0, 1}, {a, b, ..., y, z} and so on. Let I(↵) denote the

cost of inserting a symbol ↵ into a sequence and D(↵) denote the cost of deleting a symbol ↵

from the sequence. Finally, let S(↵, �) denote the cost of substituting a symbol ↵ with another

symbol �. A combination of insertions, deletions and substitutions can transform x into y. Several

such combinations are possible in general, and each combination incurs an aggregate cost. The

edit distance or Levenshtein distance is the minimum aggregate cost necessary to perform this

transformation [20].

We use L(i, j) to denote the edit distance between the two subsequences x1x2...xi and

y1y2...yj . Fix L(0, 0) = 0. Define accumulated insertion and deletion costs as

L(0, j) =
jX

k=1

I(xk) and L(i, 0) =
iX

k=1

D(yk)

In the example of Fig. 3, the insertion and deletion cost of each symbol is 1, so the accumulated

costs just increase monotonically in the topmost row and the leftmost column. Mathematically,
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the edit distance L(m, n) is given by the following recurrence relation for 1  i  m, 1  j  n:

L(i, j) = min

8
>>><

>>>:

L(i � 1, j) + D(yj),

L(i, j � 1) + I(xi),

L(i � 1, j � 1) + S(xi, yj)

9
>>>=

>>>;
(1)

As before, the goal is for the server to compute E(L(m, n)) without discovering x and without

revealing y to the client. This is accomplished by filling up an m⇥n matrix by privately computing

E(L(i, j)) at each stage according to (1). Observe that, while calculating E(L(i, j)) and traversing

the matrix in a raster fashion, the server already possesses previously computed encryptions of

L(i � 1, j), L(i, j � 1) and L(i � 1, j � 1). It also knows I(xi) and can obtain E(D(xi)) from

the client. Now, the three terms in the curly brackets in (1) represent just additions, hence their

encryptions are computable with additive homomorphic encryption, provided an encryption of

the substitution costs S(·, ·) is available [21]. In general, the substitution cost S(xi, yi) can be

expressed as a look-up table indexed by the sequence element xi of the client and yi of the

server. Therefore, an encryption of S(xi, yi) is always computable via oblivious transfer.

Then, it remains to compute E(L(i, j))—the encryption of the minimum of the three quantities

which are themselves encrypted. This is accomplished via a minimum-finding protocol. Methods

to accomplish this are described in the next subsection. Repeating this process mn times, the

server obtains E(L(m, n)) which is the desired result. The privacy-preserving edit distance

protocol, which essentially is an instance of dynamic programming with privacy, can also be

used with minor modifications for related distance metrics such as sequence similarity and Earth-

mover’s distance [22].

E. Privacy-Preserving Minimum Finding

Having obtained encrypted distances E(d(x,y(i))) of a query signal from several signals in

a database, the next step is to identify the closest one, i.e., to privately find y(NN) such that

d(x,y(NN))  d(x,y(i)) for all i. Given that some privacy-preserving distance computation has

been carried out prior to minimum finding, it is vital that the minimum finding protocol should

not reveal the index i
⇤ = arg mini d(x,y(i)) of the nearest neighbor to the client or to the server.

In some applications, it may be necessary to also conceal the value of d(x,y(NN)) from the

server.

One approach to accomplish the above goals is to first apply one or more “blind-and-permute”

steps which obfuscate the ordering of the distances from one or both parties [21]. This is
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followed by a series of secure pairwise comparisons—achieved by millionaire protocols—that

can be efficiently executed using garbled circuits. Sidebar 2 presents an example protocol, in

which “blind-and-permute” steps are accomplished using homomorphic encryption, after which

millionaire protocols are used for minimum-finding.

Rather than using homomorphic encryption for minimum finding, an alternative method is to

use garbled circuits [24, 25]. The idea is to construct an efficient secure millionaire protocol using

garbled circuits, and then to compose a sequence of millionaire protocols to find the minimum

distance. Recently, a garbled circuit construction was proposed in which secure evaluation of

XOR gates is essentially free, requiring only one XOR operation on secret keys [24]. This

construction has been leveraged for the millionaire protocol, by designing a garbled circuit for

secure comparison that consists predominantly of XOR gates [25]. The method has approximately

half of the protocol overhead incurred by previous methods employing garbled circuits. In some

cases, the overhead of this method is even lower than that of the homomorphic cryptosystem-

based protocol described above.

Here, we have focused on communicating the key ideas in encrypted-domain signal processing

for PPNN by considering protocols for semi-honest non-colluding parties. To prove that privacy

is preserved in such protocols, it is sufficient to verify that decryption is possible only at

the party that possesses the private decryption key, that inputs from other parties are made

inaccessible to the decrypting party by means of additive blinding and—in the case of minimum

finding—permutations. For more extensive discussion on computationally private methods, which

includes privacy proofs, complexity studies, possible attacks and collusion scenarios and emerging

applications, we refer the reader to a recently published survey [26].

F. Extensions to Multiparty Scenarios

To illuminate the basic operations in encrypted-domain protocols, the scenario above was

deliberately kept simple. The above techniques can be extended in several beneficial directions.

For example, it may be too restrictive to require that the server possess plaintext data y(i) in

Fig. 2. What if the untrusted server is merely used for outsourced computation and storage of

data owned by other private parties, as shown in Fig. 4? To perform distance computation in this

scenario, there are at least two possible alternative strategies: One strategy is to allow calculation

of the cross terms, such as E(xi)�2yi in the Hamming and Euclidean distance calculation at

the private parties. The cost of this strategy is an increase in computational complexity at the
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Inputs: Client has the vector x. The server has vectors y(i) and encrypted distances, E(d(x,y(i))).

Following our convention, we denote the n-length vector of distances by the symbol d, and

its elementwise homomorphic encryption by E(d). Assume that there is a second additively

homomorphic cryptosystem whose decryption key is known to the server alone. To distinguish

this from the client’s cryptosystem, we will denote the encryption function for this second

cryptosystem by E
0(·).

Output: Client obtains y(NN), i.e., the vector y(i) which minimizes d(x,y(i)).

Protocol: The minimum finding protocol proceeds thus:

1) The server generates a random vector s and a permutation ⇡S on {1, 2, ..., n}. It computes

E(⇡S(d � s)) and sends it to the client. It also sends E
0(⇡S(s)) to the client.

2) The client decrypts ⇡S(d � s). Then it generates a random vector c and a permutation ⇡C

on {1, 2, ..., n}. The client then computes E
0(⇡C(⇡S(s) � c)) and sends it to the server,

while retaining with itself ⇡C(c + ⇡S(d � s)) =: a.

3) The server decrypts ⇡C(⇡S(s) � c) =: b. Notice that the server and client now possess

additive shares of the permuted distance vector, i.e., a + b = ⇡C(⇡S(d)), but neither of

them can reverse the other’s permutations.

4) Further, letting u, v denote the permuted indices, notice that du > dv ) au+bu > av+bv )

au � av > bv � bu. Thus, using the permuted shares, the server and client can perform

repeated secure pairwise comparisons using Yao’s millionaire protocol [17] or its variants.

In this manner, the client obtains the permuted index ⇡C(⇡S(i⇤)) of the minimum distance,

and hence the permuted index of the nearest neighbor data y(NN).

5) The client then runs a 1-out-of-n OT to obliviously recover y(NN) from the server. Other

than y(NN), no other data from the server is revealed to the client. The server neither

discovered x nor the index i
⇤ of the nearest neighbor.

An alternative strategy to steps 4 and 5 above is to homomorphically combine the shares and

obtain at the server’s end a permuted vector of encrypted distances. Following this, the client and

server run an interactive protocol at the end of which each encrypted distance is converted into

a vector of encrypted bits. Given an encrypted binary representation, the index corresponding to

the minimum distance can be identified using homomorphic computations on the bitplanes [23],

or by applying millionaire protocols on the bitplanes.
Sidebar 2: Minimum-finding using blind-and-permute operations and millionaire protocols
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Fig. 4. Cryptographic PPNN protocols can be extended such that several parties outsource storage and computation

to the untrusted server. The type of homomorphic cryptosystem used dictates how the protocol complexity is divided

among the parties and the server.

individual participants, and the need for more bandwidth to transmit the encryptions to and from

the server. Another strategy is to use homomorphic cryptosystems that enable computation of

quadratic expressions or polynomials [11, 12]. This second method allows the data owners to ship

their encryptions to the untrusted server, and to fully outsource the task of distance computation.

So far, we have considered PPNN with computational methods for star-connected configura-

tions, i.e., the server accepts and processes encrypted inputs from untrusting participants. Next,

we consider a more general setup in which there are several mutually untrusting parties, some of

which possess private data, and with some pairs of parties having communication channels avail-

able to them. A simple example of this setup is shown in Fig. 5. In this multiparty computation

scenario, the two untrusting parties possessing data x and y can communicate with each other as

well as with the server. In such a scenario it is certainly possible for the parties to encrypt their

data and construct computationally private NN protocols using the techniques discussed above.

However, passing ciphertexts back and forth on the pairwise communication channels typically

incurs a huge communication overhead. Fortunately, when inter-party communication channels

are available, protocol design can be dramatically simplified using information theoretic tools

rather than encryption. We consider these methods in the next section.

II. PPNN WITH INFORMATION-THEORETIC PRIVACY

The second class of PPNN methods we describe is information theoretically private NN

protocols which leverage algebraic tools that have classically been applied in information theory

and error correction coding. The characteristic feature of these methods is the generation of

shared secrets which are sent over the communication links according a specified function
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computation protocol. The primary advantage of these protocols is that they provide privacy

against computationally unbounded adversaries. From a practical point of view, as there is no

encryption being performed, the size of the data sent over the communication links is much

smaller than that of the ciphertexts in the previous section. Thus, this class of methods is well-

suited for, but not limited to, multiparty computation scenarios in which several untrusting parties

are connected to other parties via pairwise communication links. Below, we describe various tools

for information theoretically private multiparty computation—random pads, secret sharing and

common randomness—that can be used to accomplish the two tasks of Fig. 1.

A. Tools for Information-Theoretic Privacy

For the scenario of multiple connected parties explained above, there are powerful constructive

results for privacy-preserving function computations based on secret sharing using polynomials on

finite fields [27–30]. These results can be used when the functions are distances between signals

held by the untrusting participants. It is useful to think of the secure computation procedure as

a 3-step process: In the first step, each participant generates shares of his input by evaluating

a polynomial at several points over a finite field. These shares—each of which is independent

of the true input—are then distributed to the other participants. The second step involves each

party performing local computations using the shares it possesses, such that it obtains a share

of the desired function value. A slight caveat here is that when the local computations involve

multiplication, the parties must monitor the degree of the product polynomials and, if the degree

becomes too high, they require a secure degree-reduction step which does involve a small amount

of inter-party communication [27]. The final step is a resolution step in which one or more

designated parties can combine the shares and obtain the function value.

We again illustrate private distance computation using Hamming distance and Euclidean dis-

tance as examples. For clarity of exposition, we use the multiparty computation scenario in Fig. 5,

in which Alice and Bob can communicate with each other, as well as with the server. In the

first example, we illustrate the use of random pads and permutations for private computation of

distance measures on binary data. These distances can indeed be computed using secret sharing,

but our aim with the first example is to point out that, in some cases, PPNN is possible using

familiar information-theoretic tools. In the second example, we use the polynomial secret sharing

schema explained above to privately compute pairwise Euclidean distances between signals owned

by the untrusting parties.
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Fig. 5. Mutiple parties can interact with a server to compute distances (or additive shares of distances) with

information-theoretic privacy. The parties can transmit the shares to each other using error-free secure links.

B. Binary Hamming Distance

Alice and Bob own n-length binary vectors x and y respectively. Alice randomly generates

a binary string R1, . . . , Rn ⇠ i.i.d. Bernoulli(1/2) and randomly chooses ⇡, a permutation of

{1, . . . , n}, uniformly and independently of x. She securely sends R and ⇡ to Bob. Then Alice

and Bob respectively send ⇡(x � R) and ⇡(y � R) to the server. The server just adds the

messages received from Alice and Bob, and the Hamming weight of the summation gives the

desired distance. Notice that this protocol is information-theoretically private in the sense that

no party can discover any information about inputs possessed by the other parties. Interestingly,

this rather simple protocol remains privacy preserving even when one of the three participants

becomes malicious [31].

C. Squared Euclidean Distance

Alice and Bob own n-length integer vectors x and y respectively. Then, classical secure

multiparty computation techniques [27, 28] based on secret sharing [29] may be used to compute

several distance measures that are polynomials in xi, yi. As an example, Sidebar 3 considers the

PP computation of squared Euclidean distance [31].

In the example considered, the untrusted third party discovers the distances between signals,

which may reveal too much information in some PPNN applications. In that case, the protocols

can easily be modified so that one or more parties only obtain additive shares of the distances.
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The following protocol ensures the privacy-preserving computation of squared Euclidean distance

among two untrusting parties, Alice and Bob, using a third party, the server [31].

1) Alice creates polynomials pi(j) = ↵ij + xi for i = 1, 2, ..., n, where the ↵i are uniformly

distributed over {1, 2, ..., N}. She evaluates the polynomials at three values, keeping pi(1)

for herself, sending pi(2) to Bob, and pi(3) to the server.

2) Similarly, Bob creates n polynomials qi(j) = �ij + yi. He stores qi(2) for himself, sends

qi(1) to Alice, and qi(3) to the server.

3) Consider the squared distance polynomial r(j) =
P

n

i=1(pi(j)�qi(j))2. Notice that r(0) =
P

n

i=1(xi � yi)2. The server computes r(3), receives r(1) from Alice and r(2) from Bob.

4) The server reconstructs the degree-two polynomial r using interpolation from the three

points r(1), r(2), and r(3). Then, it evaluates r(0) which is the desired squared distance.

Sidebar 3: Protocol for privacy-preserving squared Euclidian distance

D. Minimum Finding

An important consideration in the practical feasibility of information-theoretically PPNN is that,

while distance measures can be computed with perfect privacy as seen above, minimum finding is

a challenge. From the section on computationally private PPNN, it is clear that minimum finding

must involve signal comparison at some stage. Secure signal comparison, i.e., the millionaire

problem, requires OT, which cannot be realized from scratch, i.e., with protocols that use only

noiseless channels and randomness locally available at the untrusting parties [18, 19]. On the

other hand, in the presence of correlated randomness, such as a noisy communication channel

or a distributed random source available between pairs of parties, OT can indeed be performed

with unconditional privacy [32–35]. Under these conditions, the minimum finding task described

in the previous section could conceivably be performed with information-theoretic privacy.

III. PPNN WITH RANDOMIZED EMBEDDINGS

Embeddings are very useful tools in the design of privacy-preserving NN cryptosystems.

Mathematically, an embedding is a transformation of a set of signals in a high-dimensional

space to a (typically) lower-dimensional one such that some aspects of the geometry of the set

are preserved, as depicted in Fig. 6. This property is beneficial in two ways. First, since the

set geometry is preserved, the PPNN protocols discussed above can be performed directly using
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Fig. 6. Distance-preserving embeddings approximately preserve a function of the distance, allowing the NN problem to

be solved in a space that (typically) has fewer dimensions. Embeddings can be used in conjunction with cryptographic

protocols, and can also be designed to be privacy-preserving on their own.

the low-dimensional embeddings, rather than the underlying signals. As a result, whether the

underlying protocol is computationally or information-theoretically private, the computational

complexity and the communication overhead are both reduced. Second, certain embeddings can

be designed with privacy-preserving properties of their own, thereby completely eliminating the

need for cryptographic tools and the associated overhead. Thus, some types of embeddings

complement the cryptographic methods discussed earlier, whereas other types of embeddings

completely replace them. Below, we consider both types.

A. Johnson-Lindenstrauss Embeddings

The best known embeddings are the Johnson-Lindenstrauss embeddings [36]—functions f :

S ! RK from a finite set of signals S to a K-dimensional vector space such that given two

signals x and y in S , their images satisfy:

(1 � ✏)kx � yk22  kf(x) � f(y)k22  (1 + ✏)kx � yk22.

In other words, these embeddings preserve `2 distances, i.e., Euclidean distances, of point clouds

within a small factor, measured by ✏.

The original paper by Johnson and Lindenstrauss demonstrated that an embedding preserving

the distances as described above exists in a space with dimensionality logarithmic in the number

of signals in the embedded set and independent of the dimensionality of those signals. More

precisely, an embedding exists in a K = O( 1
✏2

log L)-dimensional space, where L is the number

of signals in S (its cardinality) and ✏ the desired tolerance in the embedding. Subsequent

work showed that it is straightforward to compute such embeddings using a linear mapping.

In particular, the function f(x) = Ax, where A is a matrix whose entries are drawn randomly
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from specific distributions, is a J-L embedding with overwhelming probability. Commonly used

distributions are i.i.d. Gaussian, i.i.d. Rademacher1, or i.i.d. uniform.

A J-L embedding typically results in a significant dimensionality reduction which reduces the

complexity of NN computations. Distance preservation and dimensionality reduction ensure that

PP distance computation can be achieved at low protocol overhead by applying the methods of

the previous two sections to the embeddings f(x) and f(y), rather than using the original signals

x and y.

One important consideration in using such embeddings is the quantization which is necessary

before a possible encryption and transmission of the embedded signals. If the quantization is not

carefully designed, the performance of the embedding suffers [37]. Furthermore, in the extreme

case of quantization down to 1-bit, the embedding can fail to preserve the amplitudes of signals

and, therefore, their `2 distances. It does, however, preserve their angle, i.e., their correlation

coefficient.

More precisely, if f(x) = sign(Ax), where sign(·) denotes the element-wise sign function

and A consists of i.i.d. normally distributed entries, the Hamming distance in the embedding

space is approximately proportional to the acute angle between the original signals, as measured

by the inverse cosine of their inner product [38, 39]:
����dH (f(x), f(y)) � 1

⇡
arccos

hx,yi
kxk2kyk2

����  ✏,

where dH(·, ·) denotes an appropriately normalized Hamming distance. In applications in which

the nearest neighbors are determined using the angle as a distance metric, as opposed to the `2

distance, it suffices to determine the near neighbors in the embedding domain using Hamming

distance as a similarity measure [38].

B. Locality Sensitive Hashing

In the same spirit, Locality Sensitive Hashing (LSH) encodes linear vector spaces into binary

spaces [40]. The premise of LSH is that the set of signals of interest can be separated into

groups—often referred to as “buckets” in the hashing literature—using a probabilistic mapping

such that neighboring signals belong to the same group, i.e., hash to the same value, with very

high probability. Thus, one can rapidly search for the near-neighbors by looking for signals in

1which is identical to the Bernoulli distribution, except that the variable takes values in {�1,+1} instead of {0, 1}.
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the same group. To verify with high probability if two signals are neighbors, one can just verify

if their hash is the same.

Mathematically, given two signals x, and y, their hashes are functions f : S ! {0, 1}n that

satisfy

f(x) = f(y) w.h.p., if kx � yk2  r

f(x) 6= f(y) w.h.p., if kx � yk2 � cr

for some radius of interest r and constant factor c > 1. Thus, if two signals have distance smaller

than r they will hash to the same value with high probability. Using hashes, one can confidently

identify the neighbors of a signal within a distance r, while excluding signals farther than cr.

LSH methods shift the focus to bits instead of dimensionality, making them appealing for PPNN

computation, especially in communication-heavy cryptographic protocols [6]. While several LSH

approaches exist, the most efficient encoding is based on the Leech lattice [40]. One notable

method is based on randomized projections and scalar quantization [41], resembling a quantized

Johnson-Lindenstrauss embedding. Thus, in addition to the LSH guarantees, it also offers distance

preserving guarantees as described above.

While dimensionality-reducing embeddings of the `2 distance, as we discuss above, have been

most widely studied and applied, we note for the interested reader that research in the past decade

has also revealed other, more exotic embeddings—notably, efficient embeddings of edit distance

into an `1 metric space [42–44].

C. Secure Embeddings

The two types of embeddings described above are useful as parts of a rigorous privacy-

preserving solution only when combined with a computational or information-theoretic protocol to

guarantee privacy, as shown by the combinations of JL embeddings and homomorphic encryption

for computing `1 and `2 distances [45]. It would be desirable if an embedding could provide

security guarantees on its own, without requiring a cryptographic protocol as a wrapper. Such

a class of embeddings has been introduced based on recent work in universal scalar quantiza-

tion [46]. These embeddings provide information-theoretic privacy on their own, which makes

them attractive for lightweight PPNN searches.

These embeddings rely on a Johnson-Lindenstrauss style projection, followed by scaling,
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Fig. 7. A non-monotonic quantization such as the above can be used to provide information-theoretic guarantees

for privacy-preserving nearest neighbors. This function is equivalent to a multibit quantization, where only the least

significant bit is preserved and all other bits are discarded.

dithering and scalar quantization:

f(x) = Q(��1(Ax + w)),

where A is a random matrix with normally-distributed, i.i.d. elements, ��1 is a scaling factor—

operating element-wise, in an abuse of notation—w is the dither, uniformly distributed in [0, �],

and Q(·) is the scalar quantizer operating element-wise on the input vector. In order to preserve

security and privacy, the projection matrix A and the dither w should be treated as a secret key

and not be revealed to the untrusted party.

The key feature that makes this embedding privacy preserving is the modified scalar quantizer;

it is designed to have non-contiguous quantization intervals, as shown in Fig. 7. The quantizer

can be thought of as a regular quantizer, determining a multi-bit representation of a signal and

then keeping only the least significant bit (LSB) of that representation. Thus, scalar values in

[2k, 2k + 1) quantize to 1 and scalar values in [2k + 1, 2(k + 1)), for any k, quantize to 0.

More precisely, the embedding satisfies

|dH (f(x), f(y)) � g (kx � yk2)|  ✏,

where dH(·, ·) is the Hamming distance in the embedding space, and g(d) is the distance map

shown in Fig. 8. The map is approximately linear for small d and becomes a constant exponentially

fast for large d greater than a distance threshold D0. The slope of the linear section and the

distance threshold D0 are determined by the embedding parameters, � and A.

An information-theoretic argument guarantees that these embeddings convey no information

about two signals if the distance between the signals is greater than the threshold D0. For an

M -bit embedding, assuming that the embedding matrix and the dither remain private, the mutual
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d

g(d)
Johnson-Lindendstauss,
Binary ε-Stable Embeddings

Privacy-Preserving Embeddings

D00

Fig. 8. Embeddings preserve a function g(d) of the original signal distance d = kx� yk2. For most embeddings,

such as Johnson-Lindenstrauss and Binary ✏-stable Embeddings, this function is linear, as shown in blue. For privacy-

preserving embeddings, the function is approximately linear initially and quickly flattens after a certain distance D0,

as shown in red. These embeddings provide information-theoretic security guarantees for signals with distance greater

than D0.

information between the embeddings of two signals decays as

I(f(x); f(y)|d)  10Me
�cd

2

,

where c is a constant that depends on the embedding parameters. This ensures that an eavesdropper

cannot reconstruct the signals and an untrusted third party cannot obtain any information about

the relationship between the two signals if they are far apart. This property is very useful in the

design of lightweight protocols for PPNN applications.

IV. OPEN PROBLEMS AND DISCUSSION

In this article, we have covered three classes of PPNN methods, showing by examples how the

building blocks, i.e., distance computation and minimum finding, can be realized under privacy

constraints. Table I compares and contrasts these classes. It is our hope that the article will

bring this important topic from privacy-preserving computation to a broader signal processing

audience, and stimulate new theoretical and applied work at the intersection of signal processing,

cryptography and information theory. Our goal was to bring out the basic ideas and primitive

operations that form the building blocks of PPNN search. Because of this focus, we have not

covered here an important related topic, namely processing signals such that they are in the

correct format to be used as inputs to PPNN protocols. In particular, signal processing methods

such as media fingerprinting and robust hashing [47–49] often provide some privacy on their own,

which complements the PPNN protocol. Some of these methods are covered in other articles in

this special issue.
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Criterion Computational Methods Information-Theoretic Methods Randomized Embedding 
Methods 

Privacy 
Guarantee 

Based on the unproven hardness of 
factorization, finding residues, discrete 

logarithms, lattice problems 

Based on information-theoretic privacy 
wherein the adversary does not know a 

secret key, or a shared secret 

Based variously on information-
theoretic privacy, statistical privacy, 
and the difficulty of matrix inversion. 

Adversary Computationally bounded Computationally unbounded Bounded or unbounded 

Tools Homomorphic encryption, garbled circuits Polynomial secret sharing, random pads, 
permutations 

JL embedding, LSH, secure 
embeddings 

Overhead per 
x, y pair. 

                  ciphertext additions, 
multiplications and transmissions. 

Communication is linear in the circuit size 
and polynomial in the number of parties 

   2 matrix multiplications +  
 

Distance 
functions 

 
Polynomials in  Polynomials in  Hamming, Euclidean, Manhattan, 

and Edit distances, Angles 

Feasibility of 
minimum 

finding 
Yes Yes, if correlated randomness is available No 

€ 

O(
1
ε 2
logL)

€ 

O(n)

€ 

d(x, y)

€ 

x, y

€ 

x, y

TABLE I

A HIGH-LEVEL COMPARISON OF THE THREE CLASSES OF PPNN METHODS

There are several fascinating open problems in secure multiparty computation which directly

impact the privacy, speed, complexity and versatility of PPNN methods. In the class of cryp-

tographic approaches, advances in doubly homomorphic encryption are especially promising.

Specifically, if the ciphertext size and the complexity of the encryption and decryption operations

can be made manageable, then it would become feasible for a client to encrypt its data and send

it to a cloud-based server, which would return the PPNN result in a single round. In such a truly

outsourced computation setup, there would be no need for intermediate exchange and decryption

of ciphertexts, thus PPNN protocols would be greatly simplified.

In information-theoretic methods, many classical privacy guarantees [27, 28] for collusions or

malicious attacks only apply for computation with more than 3 parties. For example, N -party

computation with malicious colluders is possible only when the coalition of colluders has size

less than N/3. Does this mean that for the 3-party scenario considered in this article, PPNN is

impossible even if a single party becomes malicious? Surprisingly, for this 3-party case, it is still

unknown if any class of functions—let alone distance functions—can be computed privately in

the presence of a malicious adversary.

The area of randomized embeddings is receiving increased attention from the database and

compressed sensing communities, and new flavors of distance preservation are constantly being

discovered. From the perspective of PPNN search, several exciting open problems remain in
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the design and analysis of non-invertible distance-preserving embeddings. For example, how

difficult is it to recover a signal given its LSH embedding and the embedding matrix? If the

LSH embedding is replaced by the secure embedding discussed above, does the problem become

NP hard? Can randomized algorithms—similar to `1-norm minimization problems in compressed

sensing—solve the inversion with high probability? Answers to the preceding two questions

have implications for the feasibility of very low-complexity, encryption-free protocols based on

randomized embeddings.
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