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ABSTRACT
This paper describes a privacy-preserving framework for de-
livering coupons to users that approximately satisfy a pre-
defined behavioral profile. The framework is designed to
be non-interactive, i.e., vendor-side communication occurs
only when it pushes coupons out to the users that it regards as
potential customers. User privacy is protected by perform-
ing all targeting operations on the end-user’s device. The
protocol is based on a fuzzy commitment primitive that is
realized using error correcting codes. The central idea is that
a user is able to extract the coupon if her behavioral profile
approximately matches the vendor’s target profile. Unless
the coupon is redeemed, the vendor discovers no informa-
tion about the user’s behavioral profile. The error correc-
tion coding framework enforces a natural tradeoff between
the privacy of the vendor and the specificity of targeting. In
other words, if the vendor wants to target a broad class of
potential customers, it must reveal more information about
its targeting strategy to ineligible users. Conversely, if the
vendor wants to reveal less information about its targeting
strategy to ineligible users, then it must target a more fo-
cused class of potential customers.

Categories and Subject Descriptors
K.4 [Computers and Society]: Electronic Commerce—
Distributed commercial transactions, Payment schemes;
K.4 [Computers and Society]: Public Policy Issues—
Privacy

General Terms
Algorithms, Security, Privacy
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Fuzzy commitment; private behavioral targeting
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1. INTRODUCTION
Online advertising is becoming increasingly depen-

dent on behavioral targeting of consumers. Vendors
seek to customize their messaging based on data that
they gather about a user’s online behavior, physical con-
text such as location and time of day, as well as social
context such as the presence of other people of the same
age in the vicinity [1]. The intended goal of behavioral
targeting is to provide personalized and relevant mes-
sages to potential customers, while minimizing the num-
ber of irrelevant or annoying advertisements. However,
indiscriminate data gathering of the sort that is prac-
ticed today, can potentially undermine the privacy of
users [2, 3]. Therefore, it is necessary to develop meth-
ods that enable personalized messaging without com-
promising personal privacy.

There is an added concern, from the point of view
of vendors. If targeted advertising is performed in the
clear, e.g., by directly comparing a user’s behavioral
profile with a vendor’s target profile and sending coupons
or deals to matching customers, there is an incentive for
users to cheat. Ineligible users may take advantage of
the information contained in the vendor’s target profile
and attempt to redeem coupons. Thus, it is in the ven-
dor’s interest to reveal the coupon only to eligible users,
while leaking little or no information to ineligible users.
It is the goal of this paper to propose a solution that ad-
dresses privacy concerns of end-users and vendors, while
still realizing the benefits of targeted advertising.

The proposed solution is non-interactive in the sense
that the vendor pushes the coupon and its targeting
strategy in encrypted form to the user, and then en-
gages in no further communication with the user. Only
eligible users, i.e., users whose behavioral profile ap-
proximately matches the target profile, are able to dis-
cover the vendor’s targeting strategy and to decrypt the
coupon. The user’s behavioral data and any computa-
tional manipulation required to access the coupon is
restricted to her device, thereby protecting her privacy.
When a user redeems a coupon, the vendor discovers
that her behavioral profile was indeed close enough to
the target profile. If a user is not eligible, or is eligible



but chooses not to redeem a coupon, the vendor discov-
ers no information about her behavioral profile.

The proposed solution is inspired by the method of
protecting biometric templates by means of fuzzy com-
mitment [4,5]. This is a method of enabling access con-
trol without storing a biometric in the clear at the ac-
cess control device. In fuzzy commitment, a codeword
is generated from a secret key and then perturbed by
the user’s biometric at enrollment. In this way the key
is bound to the biometric, and stored in such a way that
neither the key nor the biometric is easily accessible to
an adversary. A user with a legitimate test biometric
that approximately matches the enrollment biometric,
can then extract the key and gain access. In our basic
protocol, a vendor commits a secret key that can only be
extracted by an eligible user, and later used to decrypt
and redeem a coupon. We also present an enhanced
protocol in which user authentication is enforced by a
two-factor variant of fuzzy commitment [6], where the
key-binding operation also incorporates a unique user
ID. To our knowledge, this is the first work in which a
vendor exploits fuzzy commitment to target users whose
online behavior matches a target profile.

The remainder of this paper is organized as follows:
Section 2 presents the problem setting, clarifies nota-
tion and describes the proposed non-interactive proto-
col that implements behavioral targeting. We present
an embodiment based on error correcting codes, though
other methods are possible. Privacy guarantees pro-
vided by the protocol are discussed in Section 3, along
with an information-theoretic assessment of vendor pri-
vacy. In Section 4, we compare and contrast the pro-
posed protocol with related work in behavioral target-
ing, before providing some concluding remarks.

2. BEHAVIORAL TARGETING FRAMEWORK

2.1 Problem Setting and Notation
We assume that the vendor’s targeting strategy and

the user’s behavioral profile can be represented as vec-
tors v and u in the same n-dimensional space. Such
a representation can readily be obtained by recording
pieces of information about a user’s activity that she has
consented to share while browsing the vendor’s website.
This approach has been suggested for generating user-
specific responses to search queries [7]. For our appli-
cation, elements of the behavioral vector would be val-
ues of attributes such as the number of relevant search
queries during the past week, number of similar prod-
ucts purchased in the past month, number of friends
who have purchased the items being queried, percent-
age of time spent looking at a certain class of products,
and so on. We assume that the schema, i.e., the or-
dering of attributes in u and v is the same, so that

the distance between the two vectors is a meaningful
indicator of their similarity.

For the purposes of exposition, assume further that
the elements of these vectors are binary, representing,
for instance, yes/no answers to a variety of questions
about consumer behavior. Thus, u,v ∈ {0, 1}n. Our
construction is based on algebraic error correcting codes,
so the generalization to larger finite fields can be per-
formed in a straightforward manner, allowing the be-
havioral profile to contain non-binary attributes such
as the examples cited above. The user is uniquely iden-
tified in the vendor’s database by an n-dimensional bi-
nary vector z that serves as her user ID.

The vendor and user have agreed that they will use
an error correcting code, that is defined by a generator
matrix G ∈ {0, 1}m×n. For the purpose of encrypting
the coupon, the vendor uses a binary key k ∈ {0, 1}m,
where m < n. To determine whether the user is eligi-
ble to redeem the coupon or not, she needs a way to
verify whether she has correctly extracted k. For this
purpose, the vendor and user employ a cryptographic
hash function, such as SHA2, which we denote by h(·).

2.2 Basic Fuzzy Commitment-Based Protocol
The protocol below describes a first step in which the

vendor generates an encrypted coupon, and a second
step in which a user verifies whether she is eligible to
redeem it. The two-party protocol proceeds as follows:

1. The vendor sends the following items to the user:
Enck(Coupon‖Nonce‖Signature), h(k), and the n-
dimensional target vector t = v ⊕ kG. Here,
Coupon denotes the content of the delivered coupon,
Nonce denotes a random number, and Signature =
Sigvendor(Coupon‖Nonce) is evidence that the ven-
dor has digitally signed the encrypted transmis-
sion. The operation ⊕ represents modulo-2 addi-
tion. Vendor-side operations are depicted in Fig. 1.

2. The user first computes t⊕u = (v⊕u)⊕kG. The
result is an errorprone version of the codeword kG,
where the errors are caused by the difference be-
tween the target profile v and the user’s profile
u. As shown in Fig. 2, she performs error correc-
tion decoding to recover a candidate message k′. If
h(k′) = h(k), she uses k’ to decrypt the coupon. If
h(k′) 6= h(k), she is unable to decrypt the coupon.

3. If the user has successfully decrypted the coupon
and decides to redeem it, she can check its validity
by verifying the vendor’s signature.

2.3 Protocol with User Authentication
The protocol below describes an enhancement that

prevents unauthorized users from decrypting the coupon.
This is achieved by including the user ID z in the key-
binding step as follows:
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Figure 1: Vendor encrypts the coupon with a
key k. It also binds the key to its target profile
v using fuzzy commitment.
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Figure 2: User attempts to recover the bound
key k. If successful, she can decrypt the coupon.

1. The vendor sends the following items to the user:
Enck(Coupon‖Nonce‖Signature), h(k), and the n-
dimensional target vector t = v⊕φ(z)⊕kG. Here,
φ(·) is a pseudorandom function taking values in
{0, 1}n. All other quantities are defined as before.

2. The user computes t⊕ φ(z)⊕ u = (v ⊕ u)⊕ kG.
She then proceeds as in the basic protocol.

3. PROTOCOL ANALYSIS

3.1 User Privacy
In the above protocol, after the vendor has pushed the

encrypted coupon to the user, there is no further com-
munication between the vendor and the user. So long as
the user does not redeem the coupon, the vendor finds
out nothing about her behavioral profile. Only if the
user successfully decrypts the coupon and redeems it,
does the vendor discover that the targeting was success-
ful, i.e., that the user’s behavioral profile u is sufficiently

similar to the target profile v. The degree of similarity
is determined by the parameters of the error correcting
code. For example, if G generates a (n, k, d) block error
correcting code, then a successfully redeemed coupon
reveals to the vendor that, u differs from v in at most
bd−12 c bits with high probability.

3.2 Vendor Privacy
The privacy of the vendor depends on whether the

targeted user is eligible or ineligible. We consider these
two scenarios from the basic protocol, as follows:

1. If the user is ineligible, the error sequence v ⊕ u
cannot be corrected by the code G. Hence, she
cannot recover k and cannot decrypt the coupon.
However, she still discovers some non-trivial infor-
mation about v because the space of codewords
kG has only m degrees of freedom, whereas the
vector t = v ⊕ z⊕ kG has n > m bits. The num-
ber of bits leaked about v depends on the design of
G, which in turn, depends on the targeting strat-
egy. We elaborate further in the next sub-section.

2. If the user is eligible, the error sequence v ⊕ u
is successfully corrected by the code G, so she can
extract k and decrypt the coupon. An eligible user
discovers that the targeting has been successful.
Furthermore, since she has correctly recovered k,
she can compute the vendor’s target profile exactly
using t ⊕ kG = v. If this is not desirable, then
the vendor can anonymize its strategy by adding
noise to v. The statistical distribution of the noise
would be chosen such that it provides some privacy
against eligible users but still allows decoding of k
via the code G. We will return to this point in the
analysis presented in the next sub-section.

Next, we briefly consider the effect of incorporating
user authentication. Ideally, if the user ID z′ differs
from the targeted ID z even in a single bit, the user
should not discover anything about the vendor’s tar-
get profile v, thus remaining oblivious of the targeting
strategy selected by the vendor for user z. By employing
φ(z) (instead of z) in the protocol with user authenti-
cation, we ensure that given t = v ⊕ φ(z) ⊕ kG, an
unauthorized user with ID z′ cannot extract informa-
tion about v unless φ(z′) = φ(z). Since φ(·) is a pseu-
dorandom function, the equality will occur with exceed-
ingly low probability. Note that this privacy guarantee
applies to semi-honest users who follow the protocol as
described. Vendor privacy would be compromised, for
example, if an eligible user shared the key k and her
user ID z with an ineligible user.

3.3 Information-Theoretic Analysis
We now elaborate on the two claims about vendor

privacy in the case of eligible and ineligible users in the



basic protocol. This aspect is of interest not only be-
cause it differs qualitatively from vendor privacy guar-
antees encountered in previous work on behavioral tar-
geting, but because fuzzy commitment appears to en-
force a tradeoff between the specificity of the targeting
strategy and the information revealed to ineligible users.

For information-theoretic analysis, let PK, PU, and
PV be the probability distributions from which are drawn
the key, the user’s behavioral profile and the vendor’s
target profile. Denote random variables having these
distributions using uppercase letters K, U and V re-
spectively. Thus, the quantities k, u and v in Figs. 1
and 2 can be viewed as specific values taken by these
random variables. As indicated in our problem setting,
these are all binary vectors. We make a reasonable as-
sumption that the key K consists of i.i.d. Bernoulli-0.5
bits chosen independently of V and Z. We make an-
other simplifying assumption, which may not hold in
practice, that the bits of V (and similarly U) are i.i.d.
Bernoulli-0.5. With this setup, we are first interested in
the number of bits revealed to an ineligible user, when
she receives T = V⊕KG as described in Section 2. As
in the case of biometric vectors [6], the privacy leakage
is evaluated in terms of the mutual information as:

I(V; T) = H(T)−H(T|V)

= H(KG⊕V)−H(KG) = n−m

For a block error correcting code G, n−m is indeed
the number of error correction bits needed to extract K
given the noisy codeword V⊕U⊕KG, where the noise
is given by V⊕U. This points to an interesting tradeoff
between the privacy of the vendor and specificity of its
targeting strategy, which we explain below.

Concretely, if the vendor wants a broad class of its
users to access the coupon, then it must allow different
kinds of users to correct the noisy bits given by V⊕U.
This means that, it should employ a code G with strong
error correction capability, i.e., with a large number of
parity bits, n−m. Thus, in this scenario of loose target-
ing, the vendor must reveal more information about the
target profile to ineligible users. On the other hand, if
the vendor wants to target a specific class of users, then
it needs to allow only that specific group to correct the
noisy bits given by V ⊕U. This means that, it should
employ a code G with weak error correction capability,
i.e., with few parity bits, n−m. Thus, in this scenario
of specific targeting, the vendor reveals less information
about the target profile to ineligible users.

Finally, recall from the discussion about vendor pri-
vacy above that, in order to anonymize the vendor’s
strategy against eligible users, the vendor can add noise
to v. The stronger the noise used for anonymization,
the larger the number of parity bits, n − m, needed
for error correction. Thus, using a similar argument
as above, the vendor faces a tradeoff between achieving

privacy against eligible users versus achieving privacy
against ineligible users.

3.4 A Note on Robustness
A user should be able to decrypt the coupon with high

probability if her behavioral vector u is sufficiently close
in Hamming distance to the vendor’s target profile v. In
general, for a (n,m, d) error correcting code, the user is
able to correctly extract k when the number of symbol
errors w between u and v is less than t := bd−12 c, which
is the error correction capability of the code. When the
number of errors is w > t, the system will either commit
a decoding error, i.e., decode a wrong message k′ 6= k,
or report a decoding failure, i.e., not find any codeword
within a distance t of u⊕v⊕kG. The case of decoding
error is disambiguated with high probability using the
cryptographic hash comparison shown in Fig. 2. The
case of decoding failure can be addressed using list de-
coding [8], which effectively captures codewords beyond
a distance of t, and subjects them to the hash compari-
son. The size of the list should be chosen such that the
system will reliably allow a high percentage of eligible
users to decrypt coupons, while restricting the percent-
age of “lucky” ineligible users to a low value.

4. RELATED WORK
The literature contains several technological and/or

policy approaches to privacy-preserving targeting of ad-
vertisements [9–11]. Notably, Adnostic [9] provides a
browser extension that encrypts the user’s browsing his-
tory by means of a homomorphic cryptosystem. This
allows encrypted-domain aggregation of a user’s clicks,
enabling an ad network to compute the amount that
should be billed to various advertisers without knowing
the specific advertisements accessed by the user. Our
problem setting differs from Adnostic in the sense that,
in addition to the user’s privacy, the vendor enjoys a
controlled level of privacy based on its targeting strat-
egy. Adnostic does not explicitly compare a user’s be-
havior with a vendor’s template, though this might be
possible using a suitable homomorphic encryption prim-
itive in Adnostic’s multiparty computation setting.

Another contribution that leverages multiparty com-
putation is Privad [10], which users an untrusted dealer
to anonymize a user’s click behavior before providing
it to the ad network. The ad network then bills the
relevant advertisers and pays the publishers of the ad-
vertisements while protecting the user’s privacy, and
ensuring against click fraud. As in the case of Adnos-
tic, Privad does not consider vendor-side privacy, or an
explicit comparison between a user’s behavior and the
vendor’s targeting strategy. A related scheme, called
RePriv [11], provides another browser extension, which
only shares the user’s personal information if the user
provides her explicit consent. This differs considerably



from the proposed scheme wherein the user’s privacy is
maintained unless she chooses to redeem her coupons.

The scheme most closely related to the proposed ap-
proach is PiCoDa [12], wherein a user can decrypt a
coupon if her behavioral profile matches a vendor’s tar-
get profile. Like PiCoDa, the proposed scheme allows
the vendor and user to discover each other’s data when
the user redeems the coupon. Architecturally however,
the schemes are different: PiCoDa uses Locality Sen-
sitive Hashing [13, 14], while we use error correcting
codes. Another difference is that PiCoDa does not re-
veal the vendor’s strategy to ineligible users, whereas
the proposed approach enforces a tradeoff between the
information revealed to ineligible users and the target-
ing strategy; specific targeting reveals few bits, indis-
criminate targeting reveals more bits.

5. DISCUSSION
The preceding arguments suggest that, as approxi-

mately n−m bits of the vendor’s strategy are revealed,
m (the number of bits in the key k) must be large
enough to ensure that the vendor achieves strong pri-
vacy against brute force attacks. This implies that the
behavioral vectors u,v have to be long enough, since
n > m. The practical implication is that the behavioral
profiles must be composed of a sufficiently rich set of
attributes. This is a non-trivial requirement, especially
given that most behavioral targeting today is either sim-
plistic, or is based on few behavioral attributes.

We are interested in exploring the real-world perfor-
mance of such a scheme using block error correcting
codes, such as Reed-Solomon [15] or BCH codes [16],
for which well-studied decoding algorithms are avail-
able. Another area of interest is the exploration of in-
teractive extensions of the fuzzy commitment paradigm,
in which the user and the vendor engage in a few rounds
of communication. This approach would incur a larger
protocol overhead, but could allow even stronger pri-
vacy notions for one or both parties, e.g., requiring
users (whether eligible or ineligible) to obliviously at-
tempt decryption of coupons without discovering any
information about the vendor’s strategy.
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