
Privacy, Efficiency & Fault Tolerance in Aggregate
Computations on Massive Star Networks

Shantanu Rane, Julien Freudiger, Alejandro E. Brito, and Ersin Uzun
Palo Alto Research Center (PARC)

3333 Coyote Hill Road, Palo Alto, CA 94304.
Email: {srane,jfreudig,abrito,euzun}@parc.com

Abstract—We consider the challenge of performing efficient,
fault-tolerant, privacy-preserving aggregate computations in a
star topology, i.e., a massive number of participants connected
to a single untrusted aggregator. The privacy constraints are
that the participants do not discover each other’s data, and the
aggregator obtains the final results while remaining oblivious to
each participant’s individual contribution to the aggregate. In
achieving these goals, previous approaches have either assumed
a trusted dealer that distributes keys to the participants and the
aggregator, or introduced additional parties that withhold the
decryption key from the aggregator, or applied secret sharing
with either pairwise communication amongst the participants or
O(N2) ciphertext overhead at the aggregator. In contrast, we
describe a protocol based on Shamir secret sharing and homomor-
phic encryption without assuming any additional parties. We also
eliminate all pairwise communication amongst the participants
and still require only O(N1+ε) overhead at the aggregator, where
ε� 1 can be achieved for massively multiparty computation. Our
protocol arranges the star-connected participants into a logical
hierarchy that facilitates parallelization, while allowing for user
churn, i.e., a specified number of participants can go offline after
providing their data, and new participants can join at a later
stage of the computation.

I. INTRODUCTION

Consider a multiparty computation scenario in which a
server computes aggregate measures from individual contribu-
tions of a massive number of participants. Aggregate measures
include summations, linear combinations, count queries, his-
tograms and related functions. Such situations arise repeatedly
in many applications where privacy of the participants is a
concern. Examples include aggregation of power consumption
data furnished by thousands of smart meters to a utility com-
pany, evaluating statistical measures on fitness data provided
by wearables or smartphones of millions of users, obtaining
statistics on browser activity from internet users, and so
on. Although individuals may consent to the computation of
aggregate measures in return for value-added services, they
may be reluctant to share information about their individual
behavior. In the above examples, power usage information
reveals a home-owner’s daily patterns, fitness apps may reveal
sensitive medical information, and browser activity can reveal
intimate details about an individual’s life and values.

Owing to the above privacy concerns, solutions to such
aggregation problems belong to the realm of secure multiparty
computation. The main privacy constraint in this interaction
between untrusted entities is that the data held by any indi-
vidual participant should not be revealed to other participants,
and especially not to the aggregator. The aggregator should

discover only the desired aggregate measure such as the sum
or the histogram of values, but nothing else. Moreover, to
facilitate practical deployment, additional constraints may have
to be imposed. One such constraint is that the computational
complexity should be manageable; even with large computa-
tional resources available to cloud servers, a O(N2) overhead
would be unreasonable when there are millions of participants.
Another possible constraint is that the participants may not be
able to communicate with one another. At first glance, this
threatens to rule out the elegant approaches to secure compu-
tation based on secret sharing. A third practical constraint is
that millions of participants, cannot all be expected to remain
online simultaneously for the protocol to be executed. Thus, an
aggregation protocol must be able to function correctly when
users dynamically join and leave.

II. OVERVIEW OF RELATED WORK

Addressing all the aforementioned constraints is difficult
predominantly because of the key management problem. Con-
cretely, each participant should obfuscate its input such that all
obfuscated inputs can later be homomorphically combined by
the aggregator to reveal the aggregate function. However, this
is not straightforward for the star network topology because
each participant uses its own unique key for obfuscation. Thus,
even a fully homomorphic cryptosystem will not resolve this
issue. Below, we present a short overview of attempts to
address this problem. For more details, we refer the reader
to a comprehensive review by Erkin et al. [1]

Shi et al. considered an aggregation protocol that assumes
a trusted dealer that distributes encryption keys to the partic-
ipants, and ensures that the keys vanish when the aggregator
combines the result in a prescribed way [2], [3]. A similar
approach is followed by Bilogrevic et al., to compute means,
variances and higher moments of distributions [4]. Rather than
assuming a trusted dealer, Jawurek and Kerschbaum distribute
the task of computation and decryption between an untrusted
aggregator and an untrusted key managing authority [5]. This
is an efficient approach with a single public key homomorphic
cryptosystem, that has only O(N) overhead. However, it intro-
duces an extra participant, and carries the risk of catastrophic
privacy loss if the key managing authority colludes with the
aggregator. Leontiadis et al. proposed a different solution
that allows each participant to use a different encryption key,
while distributing the knowledge of the overall decryption
key between the aggregator and an extra party called the
collector [6]. Similar to the previous approach, their scheme
forbids collusions between the aggregator and the collector.

Work Approach Network Topology No. of
Rounds

Correctness
under Node

Failures

Ciphertext
Computation

Overhead

Ciphertext
Transmission

Overhead
Shi et al. [2],
Bilogrevic et
al. [4]

Differentially private aggregation
with geometric distribution

Star network +
trusted key dealer. 1 No O(N) O(N)

Chan et
al. [3],

Differentially private aggregation
with fault tolerance

Star network +
trusted key dealer. 1 Yes O(N) O(N)

Joye and
Libert [7]

Private aggregation with a large
plaintext space using discrete
logarithms

Star network +
trusted key dealer. 1 No O(N) O(N)

Jawurek and
Kerschbaum
[5]

Practical scheme with a single
additively homomorphic key-pair

Star network +
untrusted key
managing party

1 Yes O(N) O(N)

Leontiadis et
al. [6]

Private Aggregation with
Dynamic Group Management

Star network +
untrusted
“collector” party

1 Yes O(N) O(N)

Erkin and
Tsudik [8]

Efficient homomorphic
aggregation with inter-participant
communication

Fully connected
network to share
random values

2 No O(N) O(N)

Ács and
Castelluccia
[9]

Differentially private aggregation
with additive secret sharing

Fully connected
network to share
secrets

2

Yes, via
differential

privacy. This
reduces

accuracy.

O(N) O(N)

Kursawe et
al. [10]

Private aggregation using
additive secret sharing

Star network + L
“leaders”. 2 No O(N) O(N2)

Garcia and
Jacobs [11]

Additive secret sharing with
homomorphic encryption Star network 2 No O(N2) O(N2)

This work
Shamir secret sharing and
homomorphic encryption within
cohorts

Star network 2 Yes O(N1+ε)
with ε < 1

O(N1+ε)
with ε < 1

TABLE I. A CONCISE SUMMARY OF THE LITERATURE ON PRIVACY-PRESERVING DATA AGGREGATION.

Though additive secret sharing requires pairwise informa-
tion exchange amongst the participants, this approach can still
be considered in star networks, by allowing the participants
to communicate via the aggregator. Specifically, Kursawe et
al. employed public-key encryption to send encrypted shares
of the participants’ data (or keys) to a subset of participants
(termed “leaders”) via the aggregator [10]. The leaders add
their own shares such that their effect vanishes upon combina-
tion, revealing only the sum of the participants’ data. Going a
step further, Garcia and Jacobs presented a protocol in which a
participant homomorphically encrypts each share by using the
public-key of each share’s intended recipient, but only sends
it to the aggregator [11]. The aggregator then homomorphi-
cally combines the encrypted shares, requests the decryption
of partial summations from each participant, and combines
the partial sum to reveal the final sum, but nothing else.
Unfortunately, both these approaches incur O(N2) ciphertext
communication overhead at the aggregator.

We point to two other efforts on this topic, which relax
the strict star network topology in exchange for a gain in
the efficiency of aggregation. The first is the work of Erkin
and Tsudik, which allows the participants (smart meters) to
communicate with one another, exchanging random values
before each smart meter communicates with the aggregator [8].
This is a mode of secret sharing, in which the randomized
values are chosen to vanish when the aggregator computes
the sum. The work of Ács and Castelluccia is also similar in
that they allow each participant to communicate with a small

number of other participants [9]. These works show that by
allowing a limited amount of communication amongst the par-
ticipants, the ciphertext overhead of the protocol immediately
becomes manageable, i.e., O(N). On the other hand, if any
participant leaves before the shares are combined, the final sum
computed by the aggregator becomes error-prone. Though we
do not have a proof, the above two papers suggest that O(N)
ciphertext overhead may not be achievable, in general, for
fault-tolerant aggregation in a star-connected network. Indeed,
we are not aware of any protocol that achieves this. This
insight has informed our design of a fault-tolerant privacy-
preserving aggregation scheme that utilizes Shamir secret
sharing [12] and achieves O(N1+ε) overhead. To the best
of our knowledge, this is the first scheme to achieve lower
than O(N2) overhead with fault-tolerance for a strictly star-
connected network, without introducing additional (trusted or
untrusted) parties or requiring any of the N participants to
explicitly share information with each other.

We note that in many of the above schemes [2]–[4],
[9], the participants also add noise to their data in order to
ensure differential privacy of the eventually computed aggre-
gate function. The scheme that we will present herein, can
also accommodate these approaches at achieving differential
privacy for the participants. However, in this paper, we will
concentrate only on ensuring the privacy constraints of the
multiparty cryptographic protocols. Considerations of differ-
ential privacy and specific methods to achieve it within the
proposed framework will be elaborated in a later work.

…
"

d1

d2

dm

A …
" A

C1

C2

Cm

…
" A

q(1) + r1

q(2) + r2

q(m
) + rm

mX

i=1

di

Steps 1, 2, 3 Step 4 Steps 5, 6

Evj

⇣
p
(m

) (j)
⌘

E
vj

⇣
p (1)

(j)
⌘

Fig. 1. Steps of the basic protocol of Section III. Participants send
homomorphically encrypted shares to the aggregatorA to indirectly implement
Shamir secret sharing in a star network topology.

III. SECRET SHARING FOR PRIVATE AGGREGATION

In the following, we consider a strict star topology, i.e.,
each of the participants can communicate only with the aggre-
gator, and never with any of the other participants. Clearly, the
data generated by a participant should not be revealed to the
other participants. An important privacy requirement is referred
to as Aggregator Obliviousness which means that the aggrega-
tor discovers only the aggregate function being computed and
nothing else about the inputs of the individual participants.
First, we consider the simplest aggregate function, namely the
sum of the participants’ data. Later, we will describe how to
extend the summation protocols to the computation of other
aggregate measures such as counts and histograms.

Let N be the total number of participants whose data is to
be aggregated. In this section, we consider a protocol in which
the aggregator interacts with a subset of m participants. For
convenience, suppose that it is possible to choose N = ma,
where a is some positive integer. We now describe a protocol
in which the aggregator obtains the partial sum of data held by
m participants, incurring O(m2) complexity while supporting
dynamic exits by a few of the participants. In the next section,
we will show that, using many cohorts with m participants
in each, the aggregator can obtain the final sum of data held
by all N participants with complexity O(N1+ 1

a). When a is
large, this represents a significant saving over O(N2) protocols
previously proposed for star networks.

Our initial protocol with m participants is based on Shamir
Secret Sharing [12] and additively homomorphic encryption.
The high-level idea is that each of the m participants gen-
erates a polynomial with secret coefficients whose constant
coefficient is their input data. Each participant evaluates its
polynomial at m distinct known points, encrypts the resulting
values using the public keys of relevant participants, and
sends them to the aggregator. The aggregator homomorphically
combines the encrypted shares received from all participants,
to obtain encrypted evaluations of a “sum” polynomial at those
m points. Upon decrypting these evaluations, the aggregator
performs polynomial interpolation to obtain the coefficients of
the sum polynomial, evaluates the sum polynomial at x = 0
to discover the desired sum of inputs of all participants. A
more precise description of the protocol follows below. We
assume that the aggregator and all the participants are semi-
honest (honest but curious), i.e., they will follow the protocols
but, at each step, they may attempt to discover the data held
by honest participants. Thus, during privacy analysis, we will
consider the view of semi-honest participants, and collusions
of semi-honest participants.

Inputs: Denote the aggregator by A, and each participant
by Pi, i = 1, 2, . . . ,m. Let di be the input data of each
participant. We assume that di is a non-negative integer and
di < dmax. The case of negative inputs can be accommodated
simply by appropriately shifting all di, so that they are all non-
negative. Associated with each Pi is a public-private key pair
of a semantically secure additively homomorphic cryptosystem
such as the Paillier cryptosystem [13], or its generalization,
the Damgard-Jurik cryptosystem [14]. Denoting the public key
for Pi by vi, the additive homomorphic property ensures that
Evi(a)Evi(b) = Evi(a+ b). Choose a positive integer k < m
as a fault tolerance parameter.

Output: The aggregator discovers
∑m
i=1 di. The participants

discover nothing else.

Protocol: Consider the following steps, also shown in Fig. 1:

1) The aggregator broadcasts a large prime number β >
mdmax to all participants.

2) Each participant, Pi, i = 1, 2, ...,m generates a polyno-
mial of degree k < m given by:

p(i)(x) = di + p
(i)
1 x+ p

(i)
2 x2 + . . .+ p

(i)
k xk mod β

where the coefficients p
(i)
s where s = 1, 2, ..., k, are

chosen uniformly at random from the interval [0, β).
By construction, note also that p(i)(0) = di < β, i.e.,
evaluating the polynomial at zero yields each participant’s
input data.

3) Each participant Pi evaluates the polynomial at m known,
distinct points. Without loss of generality, let these points
be the integers j = 1, 2, . . . ,m. Then, each Pi encrypts
p(i)(j) using the public key vj of the participants Pj , j =
1, 2, ...,m, and sends the ciphertexts Evj (p

(i)(j)) to the
aggregator, A.

4) For each i = 1, 2, . . . ,m, the aggregator computes

Evj (rj)

m∏

i=1

Evj (p
(i)(j)) = Evj

(
rj +

m∑

i=1

p(i)(j)

)

= Evj (rj + q(j)) = Cj

The aggregator then sends each Cj , j = 1, 2, . . . ,m to
participant Pj for decryption. Here, the constant rj is
chosen at random to hide the summation term from Pj .

5) The participants Pj who are still online, decrypt the
respective Cj and returns it to the aggregator. The ag-
gregator subtracts rj and obtains, for j ∈ {1, 2, . . . ,m},

q(j) =

m∑

i=1

p(i)(j) mod β

6) By construction, the above steps have enabled the aggre-
gator to evaluate the polynomial,

q(x) = q1x+ q2x
2 + . . .+ qkx

k +

m∑

i=1

di mod β

at some points in the set {1, 2, . . . ,m}. In order to recover
the coefficients q1, q2, . . . , qk and the desired summation,
the aggregator needs the polynomial q(x) to be evaluated
at k + 1 or more points, i.e., the aggregator needs at
least k + 1 participants to be online. If this requirement

is satisfied, the aggregator can perform polynomial inter-
polation to obtain q1, q2, . . . , qk, and recover the value of
q0 =

∑m
i=1 di, which is the quantity of interest.

Correctness: To prove that the protocol correctly evaluates the
desired summation, note that by applying additively homomor-
phic encryption with appropriate public keys, the aggregator
is able to distribute encrypted shares of the desired summation
to the participants who are still online. Functionally, this
is equivalent to distributing polynomial secret shares, and
performing additions in the BGW protocol [15]. Another way
to verify correctness is to note that the underlying Shamir
secret sharing is additively homomorphic modulo β.

Fault-Tolerance: Observe that the degree of the final “sum”
polynomial is k < m. Hence, the protocol is fault tolerant:
The aggregator can compute the summation even when up to
m−k−1 parties go offline after Step 3, i.e., before polynomial
interpolation is used to extract the final sum from the shares.

Privacy: First, consider privacy against individual semi-honest
players. Secret sharing ensures that no honest participant
discovers the data held by any other participant. Furthermore,
the homomorphic cryptosystem ensures that the aggregator
only discovers the coefficients of the “sum” polynomial q(x),
but does not discover the coefficients of the component polyno-
mials p(i)(x). The privacy guarantee against individual semi-
honest participants is information-theoretic, while that against
the aggregator is computational.

Next, consider privacy against collusions of semi-honest
players. Since the participants can only communicate through
the aggregator, any non-trivial semi-honest coalition must
contain the aggregator. In order to learn any further information
about the data di of an honest participant Pi, the coalition
needs to access at least k + 1 decrypted polynomial secret
shares p(i)(j) for j ∈ {1, 2, ...,m} and perform polynomial
interpolation. To achieve this, the coalition must comprise the
aggregator and at least k + 1 other semi-honest participants.
In other words, the protocol preserves privacy of an honest
participant against coalitions consisting of the aggregator and
up to k other participants.

Complexity: We measure complexity in terms of the amount
of ciphertext communication and computation. The commu-
nication complexity, as dominated by Step 3, is O(m2). The
ciphertext computation complexity, as dominated by Step 4, is
also O(m2) . Note that, the aggregator has to perform polyno-
mial interpolation in Step 5. This can be accomplished using
Lagrange interpolation, which has O(m2) complexity [16].

IV. LOGICAL HIERARCHY TO MITIGATE O(N2)
OVERHEAD

In this section, we show how it is possible to avoid the
O(N2) complexity blow-up, by grouping the N participants
into smaller cohorts of m participants each. Note that this
does not trivially follow by just repeating the protocol from
Section III a total of dN/me times, because this would reveal
extra information to the aggregator in the form of the partial
sums

∑
i di of each cohort of m participants. To avoid this,

additive secret sharing is used again, as explained below.

…"

A

…"

A

…"

A

…"

A

…"

A

…"

A

…"

A."."." ."."."

."."."

Cohort participants

Cohort obfuscators
promoted to next stage

Fig. 2. The star-connected participants are arranged in a logical hierarchy
to reduce the overall ciphertext overhead. This structure also ensures that, in
each cohort, up to m− k − 1 participants can go offline after Step 3 of the
basic protocol in Section III. It also allows new participants to join a cohort
at a later stage.

At a high level, the solution technique is as follows:
One participant is chosen at random by the aggregator as
an untrusted “obfuscator” for each cohort. The aggregator
executes the protocol of Section III for each cohort, however,
the obfuscator of each cohort additively blinds its input. As a
result, the aggregator obtains an incorrect sum for each cohort.
In the next stage, all obfuscators are again grouped into new
cohorts of m participants each, and again, a new obfuscator
is chosen at random for each cohort. At this stage, each
participant, except the newly chosen obfuscator, treats as input
a value that reverses the blinding operation from the previous
round. Then, the aggregator again executes the protocol of
Section III for all the newly formed cohorts. This process
is repeated until only one cohort can be formed, containing
a maximum of m participants. At this stage, no obfuscator
is chosen and the protocol of Section III is executed as is,
yielding the desired summation of the inputs of all N parties.

The protocol is drawn in Fig. 2 and explained more
precisely below. Recall that we have chosen N = ma for
convenience, to illustrate how the quadratic complexity of the
summation protocol is mitigated when N � m.

1) The following steps are repeated until only one cohort of
m participants remains:
a) The aggregator divides the participants into cohorts of
m participants and chooses an obfuscator at random
within each cohort. Suppose there are T cohorts re-
maining. For t = 1, 2, ..., T , denote by d

(t)
o , the input

data of the obfuscator of the tth cohort.
b) Each obfuscator chooses an integer value st uniformly

at random from the set I = {s ; |s + d
(t)
o | < dmax},

and uses d(t)o + s as its new input.
c) For each cohort, the aggregator executes the basic pro-

tocol of Section III and records the partial summation.
Note that this summation is not the true sum of the in-
puts of the cohort’s participants, because its obfuscator
has introduced a random error in the previous step.

d) The T cohort obfuscators are now promoted to serve
as the participants in the next stage of the computation.
For this stage, their input values are set to d(t)o = −st
in order to cancel for the effect of the masking above.

2) In the final remaining cohort, m participants interact with
the aggregator to execute the basic protocol of Section III.

3) The aggregator adds up the partial sums of all cohorts.

Correctness: The correctness of the above protocol follows
from that of the basic protocol of Section III. The difference
is that instead of computing the true sum of the inputs of each
of the cohort’s participants, the partial sum for each cohort
is masked by its obfuscator, in order to hide the partial sum
from the aggregator. At the end of each stage, the masked
value of the cohort’s obfuscator is reversed in sign as described
above, to serve as input data when that obfuscator becomes a
participant in the next stage. It can be verified that, when the
aggregator adds up the partial sums of all cohorts, it obtains
the true summation given by

∑N
i=1 di.

Fault Tolerance: Within each cohort, fault tolerance carries
over from Section III. However, the cost of the hierarchical
approach is reduced fault tolerance with respect to the obfus-
cators. Since obfuscators are promoted to the next level of the
hierarchy, as shown in Fig. 2, they need to remain online until
Step 3 of the basic protocol is completed for the cohort in
the new hierarchical level. If an obfuscator goes offline before
this step, the aggregator has to discard the partial summation
of the cohort from which the obfuscator was selected, as well
as all cohorts below it in the hierarchy.

Privacy: For individual semi-honest players inside a cohort,
privacy properties are the same as those discussed in the
previous section. We re-iterate that none of the cohort-based
aggregation operations (except the last one) reveals the true
sum of the participants’ data to the aggregator. Furthermore,
the obfuscators do not have any extra visibility into the partici-
pants’ data; they are merely designated to become participants
in the next hierarchical level of the protocol.

Next, consider privacy against semi-honest collusions. An
important consequence of the hierarchical construction is that,
if the aggregator colludes with an obfuscator, the two colluders
discover the summation of the inputs of all participants of
that cohort. Choosing the obfuscator at random is important.
Otherwise, a semi-honest aggregator can keep selecting the
same participant as the obfuscator, and collude with that
participant to obtain the partial summation of multiple cohorts.

Even in the above collusion attack, the colluders do not
discover the individual participants’ data. This type of col-
lusion is a milder privacy compromise compared to collusion
between the aggregator and the collector in [6] or between the
aggregator and the key authority in [5], which compromises
every honest participant’s input. From Section III, in order to
compromise the data of any honest participant, a coalition must
comprise the aggregator and at least k + 1 other participants
from the same cohort as the targeted victim. Therefore, large
coalitions are useless at discovering the data of honest partici-
pants unless any given cohort contains at least k+1 colluders.

Complexity: Recall that the ciphertext overhead of the basic
protocol of Section III was O(m2). For N = ma, the total
number of times that the basic protocol is executed can be
obtained as:

ma−1 +ma−2 + . . .+m2 +m+ 1 =
ma − 1

m− 1

Thus, the ciphertext overhead for the full protocol becomes:

O

(
m2m

a − 1

m− 1

)
≡ O(Nm) ≡ O

(
N1+ 1

a

)

Thus, the ciphertext overhead of the overall protocol is
O(N1+ε), where ε = 1

a < 1. Here, N = ma was chosen
to satisfy a hierarchy in which there are m-member cohorts at
each stage. Even if this requirement is not satisfied, and the
cohorts differ in size, a similar guarantee holds. For example,
if the cohorts at the lower level of the hierarchy have m
members, and some or all cohorts at the upper levels contain
fewer than m members, the complexity is O(N1+ 1

a′), where
a′ = logmN . For N � m, the computational complexity
again becomes significantly better than O(N2).

V. OTHER CONSEQUENCES OF HIERARCHICAL
AGGREGATION

In addition to fault tolerance and privacy against semi-
honest coalitions, the hierarchical protocol discussed above has
some useful properties, which we discuss below.

Support for Dynamic Joins: The protocol structure enables
new participants to join at later stages of the protocol. Con-
cretely, as long as there is a cohort available, either consisting
of the original participants, or the obfuscators chosen from the
original participants, new participants can join, and provide
their input to the aggregation function.

Parallelizability: The hierarchical structure readily lends it-
self to parallelized implementations, in which the aggregator
simultaneously allocates the task of computing the partial
summations to several cloud-based servers. It would have
been most preferable for the computation of all cohorts to be
simultaneously parallelized, and this is indeed possible if the
number of participants N is fixed a priori, the cohorts and their
obfuscators have been designated for each stage. However, as
our goal is to support dynamic exits and joins, computation in
all cohorts cannot be simultaneously parallelized. For example,
if the hierarchy consists of L ≈ dlogmNe levels, L stages of
parallel computation of partial sums of cohorts are possible. In
contrast, without any parallelization, the aggregator would have
to compute partial summations for dN/me cohorts, one after
the other. Thus, parallelization provides a significant speed-up
for massively multiparty computation in which N grows much
faster than m. For example, for N = 1 million participants, and
cohort size, m = 100, we have L = 3 and N/m = 10000.

Graceful Degradation of Collusion Resistance: If all N users
belonged to a single cohort, and a K-out-of-N secret sharing
scheme was used, the collusion resistance property would show
a “cliff” effect, i.e., for a single coalition of size K − 1 or
less, the privacy of the honest participants is protected. When
one more member is added to the coalition, the privacy of all
honest participants is compromised. In the hierarchical scheme
described above, collusion resistance degrades more gracefully.
i.e., honest participants are protected as long as their cohort
contains k semi-honest colluders or less. As the coalition size
increases, some cohorts will contain k + 1 or more colluders,
which is sufficient to compromise the privacy of all honest
participants within those cohorts. In other words, under the
influence of growing semi-honest coalitions, privacy loss is
initially restricted to the most infected cohorts.

VI. RELATED COMPUTATIONS

The privacy-preserving summation protocol extends to the
computation of other aggregate measures. Some illustrative
examples are given below.

1) Count queries: Suppose that the aggregator wants to
count the number of participants Pi, whose data xi falls in
a set P . The aggregator broadcasts P , and each participant
sets their input to the protocol as di = 1 if xi ∈ P , and
di = 0 otherwise. Running the above privacy-preserving
protocol then results in a count query on the set P .

2) Histograms: Suppose the aggregator wants to compute
a histogram based on data xi held by the participants.
It broadcasts a set of disjoint bins B1,B2, ...,Bh to
the participants. Each participant Pi constructs a binary
vector di ∈ {0, 1}h where the jth element dij = 1 if
xi ∈ Bj , otherwise dij = 0. Then the participants and
the aggregator run a count query for each of the h bins,
at the end of which the aggregator obtains the desired
histogram without discovering the individual vectors di.

3) Linear classifiers: For i = 1, 2, ..., N , suppose the aggre-
gator wants to run a classifier with non-negative integer
weights ci < cmax on the participants’ inputs di to deter-
mine whether cTd ≶ b. This is achieved by computing
cohort-wise linear combinations using a slightly modified
version of the protocol in Section III. Concretely, in Step
4, the aggregator computes the ciphertexts Cj using:

Evj (rj)

m∏

i=1

Evj (p
(i)(j))ci = Evj

(
rj +

m∑

i=1

cip
(i)(j)

)

As a consequence, in Step 5, the aggregator obtains
q(j) =

∑m
i=1 cip

(i)(j) mod β. Here, the large prime
number is chosen as β > mcmaxdmax. Then, in Step 6,
it evaluates the polynomial,

q(x) = q1x+ q2x
2 + . . .+ qkx

k +

m∑

i=1

cidi mod β

at k + 1 or more points. While participant privacy is
maintained as before, this process leaks more information
than just the comparison cTd ≶ b, as the aggregator
discovers the value of cTd. One salient feature, however,
is that the aggregator need not reveal the classifier weights
ci to any of the participants. Multiple linear combinations
(hence classifiers) can thus be realized, without repeating
the polynomial secret sharing step. This is an advantage
over the prior art. Concretely, although the prior art can
also be extended to compute linear combinations, in most
cases ([2]–[4], [6]–[10]), the protocols have to reveal
the weights ci to the participants. Moreover, they have
to repeat the secret sharing step whenever a new linear
combination is computed.

VII. CONCLUDING REMARKS

We have considered privacy preserving aggregation in
constrained scenarios where inter-participant communication
is not realistically possible. Introducing extra players such as
collectors and key authorities certainly simplifies aggregation
protocols, but this can be risky in practice, because a semi-
honest coalition of the aggregator and an extra player can

result in catastrophic privacy loss for all participants. To
our knowledge, only the work of Garcia and Jacobs [11]
utilized the strict star topology with no additional setup. Our
proposal can be considered as providing two improvements
to that approach: (1) Incorporation of fault tolerance, and (2)
Reduction of protocol complexity by grouping star-connected
participants into a logical hierarchy. We have also discussed
the resistance of our protocol to various collusion scenarios.

In ongoing work, we are exploring the benefits of adding
noise to the participants’ data for differentially private aggrega-
tion. Examples include adding two-sided geometric noise [2],
[3], or Gamma distributed noise [9] at the participants, in order
to achieve the desired noise distribution after aggregation. We
are also interested in aggregator-based services that enable one
participant to compare herself against a population. Such com-
putations involve non-linear operations (one or more privacy-
preserving comparisons) which increase protocol complexity
and make analysis of collusion resistance more challenging.

REFERENCES

[1] Z. Erkin, J. R. Troncoso-Pastoriza, R. Lagendijk, and F. Perez-Gonzalez.
Privacy-preserving data aggregation in smart metering systems: An
overview. Signal Processing Magazine, IEEE, 30(2):75–86, 2013.

[2] E. Shi, T-H. H. Chan, E. Rieffel, R. Chow, and D. Song. Privacy-
preserving aggregation of time-series data. In NDSS, volume 2, page 4,
2011.

[3] T-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream
aggregation with fault tolerance. In Financial Cryptography and Data
Security, pages 200–214. 2012.

[4] I. Bilogrevic, J. Freudiger, E. De Cristofaro, and E. Uzun. What’s
the gist? Privacy-preserving aggregation of user profiles. In Computer
Security-ESORICS 2014, pages 128–145. 2014.

[5] M. Jawurek and F. Kerschbaum. Fault-tolerant privacy-preserving
statistics. In Privacy Enhancing Technologies, pages 221–238, 2012.

[6] Iraklis Leontiadis, Kaoutar Elkhiyaoui, and Refik Molva. Private
and dynamic time-series data aggregation with trust relaxation. In
Cryptology and Network Security, pages 305–320. Springer, 2014.

[7] M. Joye and B. Libert. A scalable scheme for privacy-preserving
aggregation of time-series data. In Financial Cryptography and Data
Security, pages 111–125. 2013.

[8] Z. Erkin and G. Tsudik. Private computation of spatial and temporal
power consumption with smart meters. In Applied Cryptography and
Network Security, pages 561–577, 2012.

[9] G. Ács and C. Castelluccia. I have a DREAM! (differentially private
smart metering). In Information Hiding, pages 118–132, 2011.

[10] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggre-
gation for the smart-grid. In Privacy Enhancing Technologies, pages
175–191, 2011.

[11] F. Garcia and B. Jacobs. Privacy-friendly energy-metering via homo-
morphic encryption. In Security and Trust Management, pages 226–238.
2011.

[12] A. Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[13] P. Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in cryptology, EUROCRYPT99, pages
223–238, 1999.

[14] I. Damgård, M. Jurik, and J. Nielsen. A generalization of Paillier’s
public-key system with applications to electronic voting. International
Journal of Information Security, 9(6):371–385, 2010.

[15] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In
Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 1–10, 1988.

[16] D. E. Knuth. Seminumerical Algorithms, The art of computer program-
ming, Vol. 2, Section 4.6, 1981.

