
A Version Space Perspective on
Differentially Private Pool-Based Active Learning

Shantanu Rane and Alejandro E. Brito
Palo Alto Research Center (PARC)

Email: {srane,abrito}@parc.com

Abstract—We analyze pool-based active learning under a
differential privacy guarantee. At every active learning step, some
samples are selected to be labeled by an oracle, and the new
labels are used to update the classifier. We want to preserve
differential privacy during both the sample selection step and the
classifier update step. To study the evolution of the active learner,
we use the concept of a version space of possible hypotheses
(classifiers). This concept helps establish a principled notion of the
informativeness of a pool sample: When informative samples are
labeled and used for training, the version space shrinks, yielding
classifiers consistent with the labeled samples. To provide privacy,
we query the oracle with both informative and non-informative
samples using a simple randomized sampling scheme. We prove
the privacy guarantee, and characterize the increase in label
complexity resulting from our randomized sampling strategy. To
examine how our theoretical analysis manifests in practice, we
built an SVM-based active learner, and measured the accuracy
and label complexity achieved with and without privacy.

I. INTRODUCTION

Traditional non-interactive supervised learning is often
label-hungry, i.e., a very large number of labeled samples
are used to train an accurate classifier. In contrast, active
learning approaches seek to train a classifier using fewer
informative samples. This is particularly useful when very little
labeled data is available, or when labeling is expensive. We
are interested in privacy-aware variants of the active learning
workflow, which are relevant in many practical applications.
One example is federated learning, in which an accurate model
is to be trained using data that is distributed over a large
number of clients [1]. To achieve this, the centralized node
sends an initial, coarse model to the clients, asks each client
to independently update the model based on its local data,
and then aggregates the clients’ individual models. Though the
clients do not send any data to the aggregator, this approach
does not guarantee privacy. In fact, an adversarial aggregator
can observe the client models and make inferences about a
client’s sensitive data. Differentially private mechanisms were
proposed to provide strong statistical guarantees against the
success of such attacks. Recently, researchers have developed
differentially private federated learning mechanisms in the
non-interactive supervised learning paradigm where an abun-
dance of labeled data is available. Development and analysis
of privacy-aware mechanisms for active learning is the primary
focus of this paper.

II. RELATED WORK AND CONTRIBUTIONS

Differential privacy has been extensively studied and ap-
plied since its introduction in 2006 [2]; Dwork and Roth’s

WIFS‘2019, December, 9-12, 2019, Delft, Netherlands. 978-1-
7281-3217-4/19/$31.00 c©2019 IEEE.

book [3] provides an inclusive review. The literature on differ-
entially private mechanisms for active learning is relatively
sparse. Ghassemi et al. [4] trained a differentially private
anomaly detector using active learning in a streaming (online)
modality. They selected informative samples from the data
stream for labeling by an oracle, and updated a classifier using
the new labels. To identify and select informative samples, the
authors modified a heuristic developed by Tong and Koller [5]
and adapted it to the differential privacy setting. Notably, they
incorporated differential privacy both in the sample selection
step, as well as in the classifier update step. We adopt this
general privacy approach as well, though for the pool-based
rather than the online setting. More importantly, our imple-
mentation differs in one important aspect: a data sample that
is not initially chosen for labeling can be returned to the pool
for a possible later labeling opportunity.

A key contribution of this paper is the analysis of the
differentially private mechanism using the version space con-
cept [6]. This concept has been used in the analysis of active
learning, in particular, to prove convergence of the classifier
and to derive bounds on the label complexity [7]–[9]. Indeed,
the Tong-Koller heuristics for choosing informative samples
are also based on a version space analysis [5], albeit privacy
was not a consideration there. Analyzing the evolution of a
differentially private active learner from the perspective of
its steadily shrinking version space is useful in at least two
respects: (1) It provides an principled approach to choose
samples for labeling while preserving privacy, and (2) It
indicates when adding noise to a classifier for the purpose of
achieving differential privacy can also make it less accurate.
This, in turn, reveals good and bad ways to perform the
differentially private classifier update step.

This paper is organized as follows: In Section III, we
introduce the concept of a version space and use it to analyze
an active learning workflow without privacy considerations. In
Section IV, we describe the differentially private mechanism,
prove the privacy guarantee, and analyze the increase in label
complexity due to the privacy mechanism. We describe an im-
plemention of a SVM-based active learner in Section V. Using
this learner, we discuss how some of the theoretical ideas are
manifested in the experiments described in Section VI.

III. ACTIVE LEARNING SETTING: NO PRIVACY

We briefly review the concept of the version space and the
disagreement coefficient associated with a classifier. Through-
out this paper, we will consider only the 2-class problem, as
widely encountered in concept learning, anomaly detection,
and other related problems. For simplicity, we restrict the
development to the case in which the two classes are linearly
separable, though generalizing to the agnostic case is also

Class -1

Class +1

w1 w2 w3

Unlabeled

(a)

feature dimension #1

fe
at

ur
e

di
m

en
si

on
 #

2

classifier dimension #1

cl
as

si
fie

r d
im

en
si

on
 #

2

w2

w3

(b)

Origin

Fig. 1. (a) Typical active learning setting with a few labeled samples
and a large pool of unlabeled samples. 3 classifiers, w1,w2,w3 in the
current version space are shown. (b) Dual representation in which classifiers
appear as points while data samples appear as hyperplanes (lines in 2D). The
version space V is the set of points on the unit circle satisfying yih(xi) =
yi(w

Txi) > 0 which is the intersection of half-circles determined by
lines representing the training data samples. The dashed green hyperplane
corresponding to one green unlabeled sample intersects V . This sample is
informative and a good candidate for querying. The other green unlabeled
samples are represented by hyperplanes that pass outside V , and are thus
considered non-informative.

possible. Thus, the classifier is a hyperplane that separates the
data into classes with labels ±1. Suppose that the active learner
has n labeled training samples denoted by the (sample, label)
pairs as T = {(xi, yi),xi ∈ Rd, i = 1, 2, · · · , n}; a pool of m
unlabeled samples,M = {zj ∈ Rd, j = 1, 2, · · · ,m} . The xi
and zj above belong to an input space X . An initial classifier
w0 has been trained on T . We will ask an oracle for labels of
a few samples from M, and train the learner to be consistent
with all available labels. The rationale is that such a learner
will accurately classify data whose distribution matches that
of the pool.

A. Version Space

For labeled data xi, i = 1, 2, · · · , n separated by a hyper-
plane w, we define a hypothesis h(·) as h(xi) = wTxi/‖w‖
where ‖ · ‖ is the `2 norm and (·)T is the transpose operator.
Then, in the separable case, a label is assigned as yi = 1 if
h(xi) > 0 and yi = −1 otherwise. Thus, yih(xi) > 0.

Definition 1 The version space V is the set of all possible
hypotheses that separate the labeled data in the feature space
X [6]. We define the version space in terms of the hypotheses
h as well as the hyperplanes w as

V = {h ∈ H | ∀i ∈ {1, · · · , n}, yih(xi) > 0}.
= {w ∈ W | ‖w‖ = 1, yi(w

Txi) > 0, i = 1, · · · , n}

We will use the version space concept to describe the evolution
of the active learner, both in the non-private and differentially
private case. For this purpose (See Fig. 1), consider a dual
representation in which the points in the input space X
are hyperplanes in the hypothesis space W , while candidate
separators w are just points inW . In this representation, it can
be shown that the optimal classifier w∗ is the center of mass of
V . An approximation to w∗ is a classifier that maximizes the
margin with respect to each class, given by a Support Vector
Machine (SVM) classifier [5].

B. Active Learning in the Pool-based Setting

For the non-private case, we consider the popular CAL
algorithm for active learning in the separable case [10]. The
approach we describe may not necessarily be constructive, and
is meant to develop a theoretical understanding. To construct
an actual active learner for our experiments, we make some
modifications described in Section V. The active learner’s task
is to query an oracle for labels of points in M, and using the
received labels, to keep updating both the version space and
the classifier. Let t = 1, 2, ..., T denote the step number at
which the classifier and version space are updated. Let Lt be
the set of samples that have been queried, labeled and removed
from the poolM after the end of the tth step. Define L0 = Φ,
the empty set. At the beginning of the (tth) step, suppose that
c unlabeled samples are drawn from M\Lt−1, where \ is the
set difference operator. After training using the newly available
labels, we release the classifier wt.

C. Informative Samples Reduce the Version Space

Denote the version space after the tth step by Vt. Recall
that the points in the current pool, M\Lt, belong to the input
space X , and are thus hyperplanes in the hypothesis space W .
By definition (See Fig 1(b) for intuition), hyperplanes that do
not intersect Vt do not provide useful information in terms
of improving the learner’s predictive capability, and they need
not be queried. By contrast, a hyperplane corresponding to
a sample that intersects Vt indicates that some classifiers in
Vt must be removed because they would classify that sample
incorrectly. Therefore, we query the labels of such informative
pool samples and obtain a new smaller version space Vt+1 ⊂
Vt. With the new labels, a classifier wt+1 is trained which, by
construction, is consistent with all the correct predictions that
wt could make. This process is repeated until we obtain the
version space VT and the classifier wT .

D. Label Complexity

Label complexity is defined as the number of labels that
must be obtained before the classifier can be trained to a
desired accuracy. For traditional non-interactive supervised
learning, the label complexity required to reach an error
probability η ∈ (0, 1] with respect to the optimal classifier
is given by Ω(1/η) [11]. In practice, the accuracy or error
probability is computed over a labeled dataset – termed the
“holdout” dataset – that is representative of the underlying
data distribution but is not used in training. Since invoking
the oracle in active learning is costly, we must control the
label complexity. It is well known that applying active learning
heuristics to choose only informative samples to be queried,
incurs significantly lower label complexity than non-interactive
supervised learning which trains on all samples.

Lemma 1 [12] The active learning workflow described in
Section III-C will output a hypothesis with error less than η
with high probability, after O(log(1/η)) rounds.

The reader is referred to [12] for the proof. The proof
requires that a large enough number of informative samples
(denoted by γ ≤ c) be labeled prior to learning wt, for every t.
γ depends on the Vapnik-Chervonenkis (VC) dimension of the

classifier and the “disagreement coefficient”, both of which are
defined and elaborated in [12]. For our purposes, it is sufficient
to note that choosing γ samples ensures that the version space
Vt shrinks fast enough with increasing t, resulting in more
and more accurate classifiers. The label complexity of active
learning is then given by O(γ log(1/η)). In other words, the
label complexity is proportional to log (1/η), compared to 1/η
for non-interactive supervised learning.

IV. ACTIVE LEARNING WITH DIFFERENTIAL PRIVACY

Let us analyze pool-based active learning under the differ-
ential privacy paradigm. We describe our adversarial model,
and then give the privacy-aware active learning workflow.
We show that this workflow satisfies the differential privacy
guarantees. Then, we quantify the price paid for privacy
in the form of increased label complexity. We examine the
effects of differentially private mechanisms in the version
space. Our study suggests that careful consideration of the
privacy/performance tradeoff is necessary while updating the
active learner in the differentially private setting.

A. Adversarial Model under Differential Privacy

The adversarial model is slightly different from the one
usually encountered for the standard supervised learning sce-
nario. Since the learner typically starts with a small training
set (i.e., n is small), we don’t seek to protect the privacy of
the training set. We seek instead to protect the privacy of the
pooled samples whose labels are queried and used to update
the classifier. Hence we assume that the adversary knows the
training set of n samples. Further, the adversary possesses an
adjacent pool of m samples denoted by M′ = {z′j , j =
1, 2, · · · ,m}, where there is a particular i ≤ m such that
z′i 6= zi while for all valid j 6= i it holds that z′j = zj .
Crucially, the adversary does not know the index i of the
sample that differs.

We require that the adversary should not be able to identify
zi by observing any model update wt. Furthermore, he should
not be able to find out whether zi was used to train wt. Let the
vector of classifiers be WT = (w1,w2, · · · ,wT). Let c unla-
beled samples be drawn from the pool and examined at each
step, as in the non-private case. Let QT = (S1,S2, ...,ST)
with Sk = (s(k−1)c+1, ..., skc). Here, Sk, k ∈ {1, · · · , T} is
a binary vector of length c, containing selection results, in
which s(k−1)c+j = 1 if the jth sample from Sk was chosen
for labeling by the oracle, and s(k−1)c+j = 0 if it was not
chosen. We require that the probability of deriving a certain
classifier will change by at most a small multiplicative factor,
even if the differing sample was used for training the learner.
Concretely, using the definition of ε-differential privacy [3]:

P (WT ,QT |M) ≤ exp(ε)P (WT ,QT |M′)

We remark that the adversary’s view includes only the adjacent
pool M′, and the outputs of the adversary are the vector of
classifiers WT and the binary vector QT that indicates which
samples are chosen for labeling.

B. Differentially Private Active Learning Workflow

As before, an initial classifier w0 has been trained on n
training samples. By our assumptions, w0 is available to the

adversary. We want to improve the classifier’s accuracy with
the help of the pool M, without revealing to the adversary
which samples inM caused the model updates. We retain the
same publishing schedule, i.e., c samples are queried at each
step, the classifier models w1,w2, · · · ,wT , are published and
available to the adversary. To achieve privacy, we propose the
following privacy-aware version of the workflow in Section III.

Suppose that, we are at the beginning of the tth step of
the model update process, the version space is Vt−1, the
corresponding model maintained by the learner is wt−1. The
learner has access to the pool Ut−1 =M\Lt−1. Now, consider
the hyperplanes in the hypothesis space W corresponding to
the unlabeled samples in Ut−1. Some of these hyperplanes
intersect Vt−1, while others pass outside it.

Recall that a hyperplane that intersects Vt−1 represents an
informative sample whose label should be queried. However,
in the differentially private workflow, we must adopt a different
approach to choose samples for querying. Concretely, for
each i = 1, 2, · · · , |Ut−1|, if the hyperplane corresponding to
zi ∈ Ut−1 passes through Vt−1, query zi with probability
p > 1/2. Otherwise, if the hyperplane corresponding to zi
passes outside Vt−1, query zi with probability 1 − p. If zi
was informative but not chosen for querying, it is returned to
the pool for possible querying later. If zi was non-informative
and not chosen for querying, it is discarded from the pool.
The procedure is repeated for zi+1 until c samples from Ut−1
have been examined. This is inefficient compared to the non-
private version because not all informative samples (those
whose hyperplanes intersect Vt−1) are chosen, and some non-
informative samples (those whose hyperplanes do not intersect
Vt−1) are chosen. The inefficiency depends on p.

Denote the non-private classifier trained using the newly
labeled points by w†t . From this classifier, we derive and
release a εm-differentially private classifier wt. We emphasize
that, at each update step, the adversary’s view includes the
previous released (differentially private) classifier wt−1, an
adjacent pool M′ and the binary vector St, indicating which
samples have been chosen for labeling just before updating
the classifier, as defined in Section IV-A. Thus, applying the
definition of differential privacy, we have for each t < T ,

P (wt|wt−1,St,M) ≤ exp(εm)P (wt|wt−1,St,M′) (1)

Our approach is agnostic to the particular mechanism
used to achieve εm-differential privacy in wt. Thus, output
perturbation, or objective perturbation or the exponential mech-
anism could be used. To reiterate, (a) the model updates
w1,w2, · · · ,wT are derived using a differentially private
mechanism, and (b) w†T has the desired accuracy η. Now, we
can make a few privacy claims.

Proposition 1 As described above, at each step t, let
Bernoulli(p) sampling be used to query samples whose hyper-
planes intersect Vt−1, and Bernoulli(1−p) sampling is used to
query samples whose hyperplanes do not intersect Vt−1. For
p ≥ 1/2, this selection procedure is εp-differentially private
with εp = log p

1−p .

Proof: Assume that the samples in M and M′ are
ordered consistently. This is a conservative assumption, but

the situation can occur, for example, if the learner and the
adversary use a known algorithm to rank unlabeled samples
based on their informativeness. The adversary has observed
wt and knows its version space V ′t. Since M and M′ differ
in one element, V ′t may or may not be the same as Vt.

Let si denote the selection variable for a pool sample zi ∈
M or z′i ∈ M′. si = 1 indicates that zi (or equivalently
z′i) is selected for querying, while si = 0 indicates otherwise.
Then, to construct the bound for si = 1, we use the worst
case situation in which the hyperplane corresponding to zi
intersects Vt but the hyperplane corresponding to z′i does not
intersect V ′t. Thus,∣∣∣∣log

P (si = 1|M,wt)

P (si = 1|M′,wt)

∣∣∣∣
<

∣∣∣∣log
P (si = 1|zi intersects Vt)

P (si = 1|z′i does not intersect V ′t)

∣∣∣∣ =

∣∣∣∣log
p

1− p

∣∣∣∣
The case si = 0 is argued similarly, for the worst case where
the hyperplane corresponding to zi does not intersect Vt but
the hyperplane corresponding to z′i intersects V ′t. As p ≥ 1/2,
we drop the absolute value notation and the result follows.

Theorem 1 Suppose the differentially private learner is
trained over T steps with c samples labeled per step. Let
|M| = |M′| > Tc. The released classifiers are ε-differentially
private, where ε = εm + εp.

Proof: Again assume that the adjacent pools M and
M′ are indexed consistently. Without loss of generality, set
W0 = 0. The classifier is updated at each step using a εm-
differentially private mechanism. Then, we have,

P (WT ,QT |M)

P (WT ,QT |M′)
=

T∏
t=1

P (wt,St|M,Wt−1)

P (wt,St|M′,Wt−1)

=

T∏
t=1

P (wt|wt−1,M,St)P (St|wt−1,M)

P (wt|wt−1,M′,St)P (St|wt−1,M′)
(2)

=
P (wi|wi−1,M,Si)

P (wi|wi−1,M′,Si)
∏
k∈τ

P (Sk|wk−1,M)

P (Sk|wk−1,M′)
(3)

=
P (wi|wi−1,M,Si)

P (wi|wi−1,M′,Si)
∏
k∈τ

∏
1≤j≤c

P (s(k−1)j+c|wk−1,M)

P (s(k−1)j+c|wk−1,M′)
(4)

where the sample that differs betweenM andM′ was chosen
for querying at step i ≤ T . To obtain (2), observe that wt

depends only on samples from M and on the immediately
previous classifier wt−1. Note that step i is not necessarily the
first step the differing sample was encountered. For instance,
the sample could have been informative at step t < i, i.e.,
intersecting the version space Vt−1 but was not selected for
querying in the Bernoulli sampling process, and thus returned
to the pool. This creates the possibility of the differing sample
being chosen at a later step. The set τ ⊆ {1, 2, · · · , T} in the
second term of (3) is the set of all steps at which the differing
sample could be encountered in our pool-based active learning
scenario. This is different from a stream-based (online) settings
in which the differing sample is seen only once, whether it is
chosen for querying or not [4]. To obtain (4), we use the
definition of Sk in Section IV-A.

For p ≥ 1/2, the double product term in (4) is maximized
in two cases: Either (a) the differing sample, which belongs to
M, intersects Vi−1 and is queried by the learner, whereas its
counterpart inM′ does not intersect V ′i−1 but is queried by the
adversary or (b) At any step t ≤ T , the differing sample does
not intersect Vt−1 and is not queried by the learner, whereas
its counterpart in M′ intersects V ′t−1 but is not queried by
the adversary. The probability ratio is p/(1−p) in either case.
Since we stipulated above that a non-informative sample – one
whose hyperplane does not intersect Vt−1 – that is not chosen
for querying is removed from the pool, the situation (b) occurs
at most once in T steps. So, we can bound the ratio in (3) as:∣∣∣∣log

P (WT ,QT |M)

P (WT ,QT |M′)

∣∣∣∣
≤
∣∣∣∣log

P (wi|wi−1,M,Si)

P (wi|wi−1,M′,Si)

∣∣∣∣+

∣∣∣∣log
p

1− p

∣∣∣∣ ≤ εm + εp.

where the last inequality follows from Proposition 1 and the
definition of εm in (1).

C. Effect of Privacy on Label Complexity

Proposition 2 For 1/2 ≤ p < 1 and classification error
probability η, consider the privacy-aware active learning
workflow described in Section IV-B. The label complexity of
this approach is O((1/p) log(1/η)).

Proof: As we noted earlier (Lemma 1), the active learning
algorithm without privacy outputs a hypothesis with error
probability less than η in O(log(1/η)) rounds, provided at least
γ informative samples are labeled at the tth step. In contrast,
for the differentially private case, samples whose hyperplanes
intersect Vt are queried only with probability p. Other non-
informative samples are queried with probability 1−p to create
uncertainty about which samples from the pool are labeled.
The non-informative samples do not contribute to the shrinkage
of Vt. Thus, to ensure that at least γ informative samples are
labeled per privacy-preserving selection step, it is necessary to
query O(γ/p) samples per step. With this larger number of per-
step queries, the conditions of Lemma 1 are again met and we
obtain a hypothesis with error less than η with high probability,
after O(log(1/η)) rounds. The effective label complexity is
thus O((γ/p) log(1/η)), and the result follows. As p ≥ 1/2,
this is only a moderate increase in label complexity.

D. Version Space View of Utility of DP mechanisms

The differentially private classifier wt is, at best, a noisy
approximation of the optimal classifier w∗t corresponding to
the version space Vt. For the linearly separable case, if the
noise is small enough to keep wt inside Vt, its consistency
with respect to Vt is preserved. However, if too much noise
is added, then wt moves out of Vt, which means that it will
classify some of the labeled samples incorrectly.

This has important implications for how we evolve the
classifier wt. One way is to update the previous noisy classifier
wt−1 using the new labels obtained in the tth step. The preced-
ing argument, however, suggests that this might compromise
the classifier’s consistency with respect to the version space.
A better approach is to (a) preserve all the samples labeled by
the oracle until step t, and then (b) train a differentially private
wt from those samples, without using wt−1.

V. AN SVM-BASED ACTIVE LEARNER

Consider an experimental learner designed to evaluate
SVM-based active learning with and without privacy. For
simplicity, only one sample is queried at each step t and its
label is added to the set of already known labels. Using the
available labels, a new non-private classifier wSVM

t is trained
using a dual SVM solver [13]. To choose the most informative
sample for labeling in the non-private case, we resort to
the following heuristic approach, called uncertainty sampling,
developed by Tong and Koller [5]: Choose the sample closest
to the hyperplane representing the SVM classifier. This gives a
concrete approach to training the active learner without having
to explicitly maintain the version space. To see why this is
reasonable, recall that the optimal classifier w∗t is the center of
mass of the version space Vt. Freund showed that choosing the
pool sample z whose hyperplane halves Vt reduces the error
of w∗t exponentially with the number of queried samples [14].
Then, if Vt has a regular shape, the hyperplane corresponding
to z would pass very close to w∗t . Moreover, it turns out that
wSVM
t is an approximation to w∗t [5]. Hence, we choose to

query the sample z whose hyperplane is closest to wSVM
t .

This heuristic approach leverages the version space-based
development from the previous section, without requiring us to
explicitly keep track of Vt. Concretely, this way of choosing a
sample z to be queried ensures that Vt keeps shrinking reason-
ably fast with increasing t. As a consequence, a sequence of
increasingly accurate classifiers, wSVM

t are learned. In the non-
private case, each released classifier is given by wt = wSVM

t .

To privately select a sample for querying, we maintain a
ranked list of pool points, based on their distance to wSVM

t−1 .
Then, we implement a Bernoulli-p trial, i.e., toss coin with bias
p and if the coin lands heads, query the top-ranked, i.e., closest
pool point. If the coin lands tails, repeat the Bernoulli-p trial
with the second closest pool point, and so on, until a sample is
queried. All samples not chosen for querying are returned to
the pool for ranking and possible re-use in subsequent learning
steps. We then retrieve the label of the single queried sample,
add it to the set of already known labels, and use the dual SVM
solver to derive a new clean classifier wSVM

t . To guarantee
differential privacy in the update step, we use the sensitivity-
based output perturbation approach [3], where scalar zero-
mean Laplace-distributed noise is added to each component
of wSVM

t . Thus, each released private classifier is given by
wt = wSVM

t + νt. To obtain νt, we follow the approach
developed by Rubinstein et al. for non-interactive supervised
SVM learning [15]. In particular, the scale parameter λt of the
Laplacian noise components νit , i = 1, · · · , d is given by:

λt ≥
4LCκ

√
d

εmnt
(5)

where L is the Lipschitz constant, C is a cost parameter in the
SVM dual optimization problem, κ is the kernel upper bound,
d is the feature dimension and nt is the number of labeled
samples in Lt ∪ T used to train the active learner at step t.
With the default `2−norm kernel, we have L = 1, κ = 1 and
C is an input to the dual SVM solver. The distribution of the
noise added to the ith component of wSVM

t is then given by:

f(νit) =
1

2λt
exp

(
−|ν

i
t |
λt

)
= Laplace(0, λt) for i = 1, ..., d

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Linear SVM, LibSVM, C = 1.00

feature dimension #1

fe
at

ur
e

di
m

en
si

on
 #

2

class +1

class -1

SVM

Fig. 2. The decision boundary of the non-private SVM is shown in black, with
circled points being the support vectors. The blue and green lines represent
the margins ± 1. This dataset is linearly separable using C = 1 in (5).

The inverse dependence of λt on nt indicates a second
privacy-utility tradeoff in addition to the increase in label com-
plexity: Although active learning guarantees that nt � |M|,
the inverse dependence unfortunately means that a classifier
trained on nt samples should be released with more noise than
one trained on all |M| samples. The extra noise may shift wt

out of Vt, the version space of the corresponding noiseless
classifier, thereby reducing its accuracy.

VI. EXPERIMENTAL EVALUATION

We generated a synthetic dataset of 120 2-dimensional
points in two linearly separable classes. The constellation of
points, and the SVM decision boundary in the non-private case
are shown in Fig. 2. In each experimental run, the SVM-
based active learner is seeded with two randomly selected
training samples, one from each class. The remaining points
are assigned to the poolM. Fig. 3(a) depicts the version space
and the final, learned non-private classifier in one experimental
run. The version space plot uses the fact that each point xi,
label yi, and consistent classifier w satisfy yi(w

Txi) > 0.
Substituting the values of xi, yi in the inequality, we obtain
intervals for consistent classifiers on the unit circle.

Our objective is to examine (1) the effect of differential
privacy in the selection step (εp) on the label complexity, and
(2) the effect of differential privacy in the update step (εm)
on the accuracy of the final released classifier wT . For each
privacy setting, i.e., (εp, εm), we run the differentially private
active learning experiment 5000 times. The label complexity
histograms in Figs. 3(b) and (c) are obtained for εp values
of 0.1 and 1 corresponding to p = 0.52 and 0.73 respec-
tively. Since label complexity is measured with respect to
the sequence of clean (un-released) non-private classifiers, it
is impacted only by εp and not by εm. The empirical label
complexity is reported as the number of queries needed until
the non-private SVM achieves 100% accurate separation of
the data into classes +1 and -1. The privacy mechanism of
randomizing the selection of the samples to be labeled does not
appear to adversely affect label complexity in our experiments.

0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y

classifier dimension #1

cl
as

sif
ie

r
di

m
en

sio
n

#2

final SVM

(a)

revised submission

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200
accuracy, solver = dual, ep = 1.00, p = 0.73

(b)

revised submission

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

accuracy, solver = dual, ep = 0.10, p = 0.52

(c)

Fig. 3. (a) The 2-dimensional version space corresponding to this dataset. Blue and green lines represent the class +1 samples and class -1 samples respectively,
and the red cross represents the final, trained, non-private SVM. The arcs show how the version space progressively shrinks as more and more informative points
are labeled, until it is a tiny arc of the (red) unit circle. (b,c) The label complexity is not significantly affected by a change in εp. The accuracy of the final
released differentially private classifier wT is adversely affected if the classifier update is made more private (i.e., εm is lowered), or if the active learner had
used very few labels. This is a direct consequence of the inverse relationship between the scale parameter λt and the number of labeled samples nt in (5).

The rate at which the randomized selection shrinks the version
space is faster than choosing the closest sample to wSVM

t in
some experimental runs, and slower in other runs. Thus, label
complexity is sometimes slightly lower, and sometimes slightly
higher than that observed for the non-private case.

The accuracy plots in Figs. 3(b) and (c) are obtained
for εm ∈ {0.1, 0.5, 1, 10}. Suppose that a empirical label
complexity of ` is observed in N(`) experimental runs. We
compute the accuracy of the private SVM averaged over N(`)
runs, for each `, and report those values in the plots of
Figs. 3(b) and (c). With more noise in the classifier update, i.e.,
with smaller εm, the accuracy falls below 100%. Additionally,
Figs. 3(b) and (c) reveal a kind of “no free lunch” tradeoff:
Learners that use more labeled samples are more accurate. This
is because they need less noise for the same amount of privacy.
Conversely, learners that use fewer labeled samples result in
more error-prone privacy-aware classifiers because they need
more noise for the same amount of privacy.

VII. CONCLUSIONS

We studied differentially private active learning from the
perspective of its steadily shrinking version space, and proved
the privacy guarantees. Our analysis reveals tradeoffs that
must be considered in the design of differentially private
active learning schemes. Firstly, privacy-aware sample selec-
tion causes only a moderate increase in the label complexity.
Secondly, privacy-aware learner update requires adding noise
to the classifier, which might reduce its accuracy. The amount
of noise added can be significantly more than that observed
in non-interactive supervised learning because fewer samples
are used for training the active learner. Thus, if a non-
private active learner achieves the desired accuracy too fast,
the accuracy of the corresponding released private classifier
is compromised. Furthermore, care must be taken to ensure
that noise added in successive update steps does not have
a cummulative detrimental effect on the classifier’s accuracy.
Therefore, it is preferable to train the active learner anew at
each querying step, using all available labeled samples, rather
than updating an existing noisy learner.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Dr.
Juan Ramón Troncoso-Pastoriza, for numerous suggestions
that helped us clarify the content and presentation of this work.

REFERENCES

[1] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers.
Protection against reconstruction and its applications in private federated
learning. arXiv preprint arXiv:1812.00984, 2018.

[2] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, 2006.

[3] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations and Trends R© in Theoretical Computer Science,
9(3–4):211–407, 2014.

[4] M. Ghassemi, A. Sarwate, and R. Wright. Differentially private
online active learning with applications to anomaly detection. In Proc.
Workshop on Artificial Intelligence and Security, pages 117–128, 2016.

[5] S. Tong and D. Koller. Support vector machine active learning with
applications to text classification. Journal of machine learning research,
2(Nov):45–66, 2001.

[6] T. Mitchell. Generalization as search. Artificial intelligence, 18(2):203–
226, 1982.

[7] S. Hanneke. Rates of convergence in active learning. The Annals of
Statistics, 39(1):333–361, 2011.

[8] M. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning.
In Proc. Intl. Conf. Machine learning, pages 65–72, 2006.

[9] S. Dasgupta. Two faces of active learning. Theoretical computer
science, 412(19):1767–1781, 2011.

[10] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active
learning. Machine learning, 15(2):201–221, 1994.

[11] S. Hanneke. Theoretical foundations of active learning. Technical
report, Carnegie Mellon University, Pittsburgh, PA., 2009.

[12] M. Balcan. Active learning lecture notes. Technical report, Carnegie
Mellon University, 2015.

[13] C.-C. Chang and C. J. Lin. Libsvm: A library for support vector
machines. ACM Trans. Intelligent Sys. and Tech., 2(3):27, 2011.

[14] Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling
using the query by committee algorithm. Machine learning, 28(2-
3):133–168, 1997.

[15] B. Rubinstein, P. Bartlett, L. Huang, and N. Taft. Learning in a
large function space: Privacy-preserving mechanisms for svm learning.
Journal of Privacy and Confidentiality, 4(1):65–100, 2012.

