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Abstract— We extend Wyner-Ziv high-rate quantization and
transform coding theory to the case in which a noisy observation
of some source data is available at the encoder, but we are
interested in estimating the unseen source data at the decoder,
with the help of side information. Ideal Slepian-Wolf coders are
assumed, thus rates are conditional entropies of quantization
indices given the side information. Transform coders of noisy
images for different communication constraints are compared.
Experimental results show that the Wyner-Ziv transform coder
achieves a performance close to the case in which the side
information is also available at the encoder.

I. INTRODUCTION

Consider an image sensor sending a noisy reading to a
central station which has access to a similar, local noisy
image. If both noisy images were available at the remote
sensor, efficient joint denoising could be carried out and the
result could be sent to the central station. In most cases,
reducing the noise would also help reduce the amount of bits
required to encode the information sent. In addition, the remote
sensor could exploit the statistical dependence with the local
information, available to the central station, to further reduce
the rate. However, if the noisy local image is not available at
the encoder, we wish to know if it is possible to maintain the
same rate-distortion performance, and how to build a coder
capable of such performance.

Source coding with side information at the decoder, also
known as Wyner-Ziv (WZ) coding in the lossy case, has been
extensively studied. The information-theoretical work [1]-
[3] establishes reasonable conditions under which the rate-
distortion performance is similar to the case in which the side
information is also available at the encoder. This has been
confirmed by studies aimed at practical implementations, WZ
quantization and transform coding [4]-[8].

There is also extensive literature on source coding of a noisy
observation of an unseen source without side information [9]—
[11]. However, most of the work on distributed coding of
noisy sources is information-theoretical [12]-[14], or when
operational, is based on fixed-rate coding [15], [16] and does
not consider high-rate quantization or transforms.

In this paper, we extend the theory on high-rate quantization
and transform coding with side information in [7] to coding
of noisy sources, assuming the availability of lossless coders
with efficiency close to ideal Slepian-Wolf coding [4].

Section II contains the theoretical results for high-rate quan-
tization, and Section III, for transforms coding. Experimental
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results on image denoising are shown in Section IV.

Throughout the paper, we follow the convention of using
uppercase letters for random vectors, and lowercase letters
for particular values they take on. We shall use the operator
name Cov for the covariance matrix of random vectors, and
the lowercase version cov for its trace.

II. HIGH-RATE WZ QUANTIZATION OF NOISY SOURCES

We study the properties of high-rate quantizers of a noisy
source with side information at the decoder, as illustrated
in Fig. 1, which we shall refer to as WZ quantizers of a
noisy source. A noisy observation Z of some unseen source
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Fig. 1.

data X is quantized at the encoder. The quantizer ¢(z) maps
the observation into a quantization index (). The quantization
index is losslessly coded, and used jointly with some side
information Y, available only at the decoder, to obtain an
estimate X of the unseen source data. Z(q,y) denotes the
reconstruction function at the decoder. X, Y and Z are
random variables with known joint distribution, such that X
is a continuous random vector of dimension n € Z* (no
restrictions on the alphabets of Y and Z are imposed).
Mean-squared error is used as a distortion measure, thus the
expected distortion per sample of the unseen source is D =
LE[X — X ||?]. The formulation in this work assumes that the
coding of the index (@ is carried out by an ideal Slepian-Wolf
coder. The expected rate per sample is defined accordingly as
R = L H(Q|Y') [4]. We emphasize that the quantizer only has
access to the observation, not to the source data or the side
information. However, the joint statistics of X, Y and Z can
be exploited in the design of ¢(z) and Z(g,y). We consider
the problem of characterizing the quantizers and reconstruction
functions that minimize the expected Lagrangian cost C =
D + AR, with A a nonnegative real number, for high rate R.
We start by considering the simpler case of quantization of
a noisy source without side information, depicted in Fig. 2.
The following theorem extends the main result of [10], [11]
to entropy-constrained quantization, valid for any rate R =
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Fig. 2. Quantization of a noisy source without side information.

H(@), not necessarily high. Define Z(z) = E[X|z], the best
MSE estimator of X given Z, and X = z(Z).

Theorem 1 (MSE quantization of a noisy source): For any
nonnegative A and any Lagrangian-cost optimal quantizer of a
noisy source without side information (Fig. 2), there exists an
implementation with the same cost in two steps:

1) Obtention of the estimate X.

2) Quantization of X regarded as a clean source, using

a quantizer ¢(Z) and a reconstruction function &(q)
minimizing E[||X — X||2] + X H(Q).
This is illustrated in Fig. 3. Furthermore, the total distortion
per sample is

D = (Ecov[X|Z] + B[| X — X|*]), (1)
where the first term is the MSE of the estimation step.

V4 X _ 0] N X
—E[X | Z] q(x) > X(g) —

Y

Fig. 3.  Optimal implementation of MSE quantization of a noisy source
without side information.

Proof: The proof is a modification of that in [11], replacing
distortion by Lagrangian cost. Define the modified distortion
measure d(z,#) = E[|X — 2|?|z]. Since X — Z < X,
it is easy to show that E[|X — X||2] = Ed(Z, X). By the
orthogonality principle of linear estimation,

d(z,&) = E[|X — 2(2)|P|2] + |I2(2) - &I|*.

Take expectation to obtain (1). Note that the first term of (1)
does not depend on the quantization design, and the second is
the MSE between X and X.

Let r(q) be the codeword length function of a uniquely
decodable code, i.e., satisfying Zq 2-r@ < 1, with R =
Er(Q). The Lagrangian cost of the setting in Fig. 2 can be
written as

€ = HBco[X|Z)+ inf Eint{|#(2)=(e)[*+Ar(0)})
r\q),r(q

and the cost of the setting in Fig. 3 as
C = (Ecov[X|Z] + Duf )Einf{l\ff —2(q)|I” + Ar(a)}),
z(q),r(q q

which give the same result. Now, since the expected rate is

minimized for the (admissible) rate measure r(q) = — log p(q)
and Er(Q) = H(Q), both settings give the same Lagrangian
cost with a rate equal to the entropy. ]

The hypotheses of the next theorem are believed to hold
if the Bennett assumptions [17], [18] apply to the PDF p(Z)
of the MSE estimate, and if Gersho’s conjecture [19] is true
(known to be the case for n = 1), among other technical condi-
tions, mentioned in [20]. M,, denotes the minimum normalized
moment of inertia of the convex polytopes tessellating R"™
(e.g., M1 =1/12).
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Theorem 2 (High-rate quantization of a noisy source):
Assume that h(X) < oo and that there exists a lattice
quantizer ¢(z) of X with cell volume V that is asymptotically
optimal in Lagrangian cost at high rates. Then, there exists
an asymptotically optimal quantizer ¢(z) of a noisy source in
the setting of Fig. 2 such that:

1) An asymptotically optimal implementation of ¢(z) is
that of Theorem 1, represented in Fig. 3, with a lattice
quantizer ¢(Z) having cell volume V.

2) The rate and the distortion per sample satisfy

2
D~ LEcov[X|Z]+ M, Vn,
R~ L(h(X) —log, V),

2 —
D~ L Bcov[X|Z] + M, 20 ") 272k,

Proof: Immediate from Theorem 1 and conventional theory
of high-rate quantization of clean sources. ]

We are now ready to consider the WZ quantization of a
noisy source in Fig. 1. Define Z(y,z) = E[X|y, z], the best
MSE estimator of X given Y and Z, X = #(Y, Z), and D, =
LEcov[X|Y, Z]. The following theorem extends the results
on high-rate WZ quantization in [7] to noisy sources. The
remark on the hypotheses of Theorem 2 also applies here,
where the Bennett assumptions apply instead to the conditional
PDF p(Z|y) for each y.

Theorem 3 (High-rate WZ quantization of a noisy source):
Suppose that the conditional expectation function Z(y,z)
is additively separable, i.e., Z(y,z) = Zy(y) + Tz(2),
and define Xz = Zz(Z). Suppose further that for each
value y in the support set of Y, h(X|y) < oo, and that there
exists a lattice quantizer ¢(Z,y) of X, with no two cells
assigned to the same index and cell volume V'(y) > 0, with
rate Ry (y) and distortion Dy (y), such that, at high
rates, it is asymptotically optimal in Lagrangian cost and

2
Dy (y) =~ M, V(y)=,
Ry (y) =~ + (h(Xy) —log, V() ,
Dy (y) = M, 92 h(X[y) 9—2Rx v (¥)
Then, there exists an asymptotically optimal quantizer ¢(z) for
large R, or more precisely, minimizing C as A — 0T, for the
WZ quantization setting represented in Fig. 1 such that:
1) ¢(z) can be implemented as an estimator Zz(z) followed
by a lattice quantizer ¢(Zz) with cell volume V.
2) No two cells of the partition defined by ¢(Zz) need to

be mapped into the same quantization index.
3) The rate and distortion per sample satisfy

2
Do~ Do + M, Vi, )
R~ L(h(X[Y) —log, V), 3)
2 —
D~ Do, + M, 2n "XY) —2R )

4) h(X|Y) = h(Xz|Y).

Proof: The proof is similar to that for clean sources [7,
Theorem 1] and only the differences are emphasized. First, as
in the proof of WZ quantization of a clean source, a conditional



quantization setting is considered, as represented in Fig. 4.
An entirely analogous argument using conditional costs, as
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Fig. 4. Conditional quantization of a noisy source.
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defined in the proof for clean sources, implies that the optimal
conditional quantizer is an optimal conventional quantizer for
each value of y. Therefore, using statistics conditioned on y
everywhere, by Theorem 1, the optimal conditional quantizer
can be implemented as in Fig. 5, with conditional costs
2

Dxy (y) =  Elcov[Xly, Z]ly] + M, V(y)n,
Rx|y () = 5 (W(X]y) —logy V(y)),

2 —
Dxy (y) = & Elcov[X |y, Z]|y] + M, 2n X1 27 2R (),
The derivative of Cx|y (y) with respect to R x|y (y) vanishes
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Fig. 5.
source.

Optimal implementation of MSE conditional quantization of a noisy

2
when A ~ 21n2 M, V(y)n, which as in the proof for clean

sources implies that all conditional quantizers have a common
cell volume V(y) ~ V (however, only the second term of
the distortion is constant, not the overall distortion). Taking
expectation of the conditional costs proves that (2) and (3) are
valid for the conditional quantizer of Fig. 5. The validity of (4)
for the conditional quantizer can be shown by solving for V'
in (3) and substituting the result into (2).

The assumption that z(y, z) = Ty (y) + Zz(z) means that
for two values of y, y1 and yo, T(y1,2) and Z(ys2, z), seen
as functions of z, differ only by a constant vector. Since
the conditional quantizer of X, q(Z|y), is a lattice quantizer
at high rates, a translation will neither affect the distortion
nor the rate, and therefore Z(y, z) can be replaced by Zz(z)
with no impact on the Lagrangian cost. In addition, since all
conditional quantizers have a common cell volume, the same
translation argument implies that a common unconditional
quantizer ¢(Zz) can be used instead, with performance given
by (2)-(4), and since conditional quantizers do not reuse
indices, neither does the common unconditional quantizer.

The last item of the theorem follows from the fact that
h(zy (y) + Xzly) = h(Xzy). "

The case in which X can be written as X = f(Y) +
g9(Z) + N, for any functions f(y) and ¢(z) and any random
variable N with E[N|y, z] constant with (y,z), gives an
example of additively separable estimator. This includes the
case in which X, Y and Z are jointly Gaussian. Furthermore,
in the Gaussian case, since Zz(z) is an affine transformation

2086

and ¢(Zz) is a lattice quantizer, the overall quantizer ¢(Z z(z))
is also a lattice quantizer, and if Y and Z are uncorrelated,
then Zy (y) = E[X|y] and Zz(z) = E[X|z], but not in general.
Observe that, according to the theorem, if the estima-
tor Z(y, z) is additively separable, there is no asymptotic loss in
performance by not using the side information at the encoder.
Corollary 4: Assume the hypotheses of Theorem 3, and
that the optimal reconstruction levels z(q,y) for each of the
conditional quantizers ¢(Z,y) are simply the centroids of
the quantization cells for a uniform distribution. Then, there
is a WZ quantizer ¢(Tz) that leads to no asymptotic loss
in performance if the reconstruction function is #(q,y) =
27(q) + Zy (y), where Zz(q) are the centroids of ¢(Zz).
Proof: In the proof of Theorem 3, ¢(Z ) is a lattice quantizer
without index repetition, a translated copy of ¢(Z,y). [ |
Theorem 3 and Corollary 4 show that the WZ quantization
setting of Fig. 1 can be implemented as depicted in Fig. 6,
where Zz(q,y) can be made independent from y without
asymptotic loss in performance, so that the pair ¢(Zz), Zz(q)
form a lattice quantizer and reconstructor for X 5.

Z X, 10T X, X
— X,(2) q(x,) =fz(q,y)—>?—>
T—’ Xy (¥)

Y

Fig. 6. Asymptotically optimal implementation of MSE WZ quantization of
a noisy source with additively separable Z(y, z).

A

III. WZ TRANSFORM CODING OF NOISY SOURCES

If Z(y, z) is additively separable, the asymptotically optimal
implementation of a WZ quantizer established by Theorem 3
and Corollary 4, illustrated in Fig. 6, suggests the transform
coding setting represented in Fig. 7. In this setting, the WZ

Fig. 7. 'WZ transform coding of a noisy source.

lattice quantizer and reconstructor for Xz, regarded as a clean
source, have been replaced by a WZ transform coder of clean
sources, studied in [7]. The transform coder is a rotated,
scaled Z-lattice quantizer, and the translation argument used
in the proof of Theorem 3 still applies. By this argument, an
additively separable encoder estimator Z(y, z) can be replaced
by an encoder estimator Zz(z) and a decoder estimator Ty (y)
with no loss in performance at high rates.

The transform coder acts now on Xz, which undergoes the
orthonormal transformation )_(’Z = UTX . Each transformed
coefficient X/, , is coded separately with a WZ scalar quantizer



(for a clean source), followed by an ideal Slepian-Wolf coder
(SWC), and reconstructed with the help of the entire side
information vector Y. AThe recqnstruction X %, is inversely
transformed to obtain X, =UX %. The final estimate of X
is X = Ty (Y) + Xz. Clearly, the last summation could be
omitted by appropriately modifying the reconstruction func-
tions of each band. All the definitions of the previous section
are maintained, except for the overall rate per sample, which
is now R = + > Ri, where R; is the rate of the i™ band.

D = 1 E[|| Xz — Xz||?] denotes the distortion associated with
the clean source X z.

The decomposition of a WZ transform coder of a noisy
source into an estimator and a WZ transform coder of a clean
source allows the direct application of the results for WZ
transform coding of clean sources in [7].

Theorem 5 (WZ Transform Coding of Noisy Sources):
Suppose Z(y,z) is additively separable. Assume the
hypotheses of [7, Theorem 4] for X4. In summary, assume
the high-rate approximation hypotheses for WZ quantization
of clean sources hold for each band, the change in the shape
of the PDF of the transformed components with the choice
of the transform U is negligible, and the variance of the
conditional distribution of the transformed coefficients given
the side information does not change significantly with the
values of the side information. Then, there exists a WZ
transform coder, represented in Fig. 7, asymptotically optimal
in Lagrangian cost, such that:

1) All bands introduce the same distortion D. All quan-
tizers are uniform, without index repetition, and with a
common interval width A2 such that D ~ A?/12.

2) D=Do+D, Do 202 hEail¥) 927,

3) U diagonalizes E Cov[X;|Y], i.e., is the KLT for the
expected conditional covariance matrix of X .

Proof: Apply [7, Theorem 4] to X . Note that since X =
Xy +XZ andX = Xy—ﬁ-)_(z, then Xz—XZ = X—X, and
use (1) for (Y, Z) instead of Z to prove 2). [ ]

Similar to Theorem 3, since X|y = Zy(y) + Xzly,
h(X7%,|Y) = h(X]|Y). In addition, D = % E[||X — X|?]
and E Cov[Xz|Y] = ECov[X Y] < Cov X.

Corollary 6 (Gaussian case): If X, Y and Z are jointly
Gaussian, then it is only necessary to assume the high-rate
approximation hypotheses of Theorem 5, in order for it to
hold. Furthermore, if Dy denotes the distortion when the
optimal vector quantizer of Fig. 6 is used, then

D-D  1/12 ™8 ~ 153dB.
Dyg — Do M, n—o 6

Proof: T(y,z) is additively separable. Apply [7, Corollary
5] to Xz and Y, which are jointly Gaussian. |

Corollary 7 (DCT): Suppose that Z(y, z) is additively sep-
arable and that for each y, Cov[X|y] = Cov[Xz|y] is
Toeplitz with a square summable associated autocorrelation
so that it is also asymptotically circulant as n — oco. In
terms of the associated random processes, this means that
X; (equivalently, Xz;) is conditionally covariance stationary
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given Y, i.e., ((X; —E[X;|y])|y): is autocorrelation stationary
for each y. Then, it is not necessary to assume in Theorem 5
that the conditional variance of the transformed coefficients is
approximately constant with the values of the side information
in order for it to hold, and the DCT is an asymptotically
optimal choice for U.

Proof: Apply [7, Corollary 6] to Xz and Y. ]

Observe that the coding performance of the cases considered
in Corollaries 6 and 7 would be asymptotically the same if the
transform U and the encoder estimator Z z(z) were allowed to
depend on y.

For any random vector Y, set X = f(Y)+Z+Nx and Z =
9(Y)+ Nz, where f(y), g(y) are functions, Nx is a random
vector such that E[Nx|y, 2] is constant with (y, z), and Nz
is a random vector independent from Y such that Cov Nz
is Toeplitz. Cov|[X|y] = Cov Ny, thus this is an example of
constant conditional variance of transformed coefficients which
in addition satisfies the hypotheses of Corollary 7.

It was shown in [7] that under the hypotheses of high-
rate approximation, for jointly Gaussian statistics, the side
information could be linearly transformed and a scalar estimate
used for Slepian-Wolf decoding and reconstruction in each
band, instead of the entire vector Y, with no asymptotic loss
in performance. Here we extend this result to general statistics,
connecting WZ coding and statistical inference.

Let X and © be random variables, representing, respec-
tively, an observation and some data we wish to estimate.
A statistic for © from X is a random variable 7" such that
O « X < T, for instance, any function of X. A statistic is
sufficient if and only if © & T «— X.

Proposition 8: A statistic T' for a continuous random vari-
able © from an observation X satisfies h(©|T) > h(©|X),
with equality if and only if 7" is sufficient.

Proof: Use the data processing inequality to write 1(0; T') <
I(©; X), with equality if and only if 7" is sufficient [21], and
express the mutual information as a difference of entropies. B

Theorem 9 (Reduction of side information): Under the hy-
potheses of Theorem 5 (or Corollaries 6 or 7), a sufficient
statistic Y] for X/Zz from Y can be used instead of Y for
Slepian-Wolf decoding and reconstruction, for each band ¢ in
the WZ transform coding setting of Fig. 7, with no asymptotic
loss in performance.

Proof: Theorems 3 and 5 imply R; = H(X,,|Y) ~
h(XZ%,|Y) — log, A. Proposition 8 ensures that h(X7,|Y) =
h(X%,|Y/), and Corollary 4 that a suboptimal reconstruction
is asymptotically as efficient if Y/ is used instead of Y. H

In view of these results, [7] incidentally shows that in the
Gaussian case, the best linear MSE estimate is a sufficient
statistic, which can also be proven directly. The obtention of
(minimal) sufficient statistics has been studied in the field
of statistical inference, and the Lehmann-Scheffé method is
particularly useful (e. g. [22]).

IV. EXPERIMENTAL RESULTS

We implement various cases of WZ transform coding of a
noisy image to confirm the theoretical results of Sections II



and III. The source data X consists of the first 25 frames of
the foreman QCIF video sequence, with the mean removed.
Assume that the encoder does not know X, but has access
to Z = X +V, where V.~ N(0,0%). The decoder has
side information Y = X + W, where W ~ N(0,0%,).
V and W are independent of each other and of X. In this
case, E[X |y, #] is not additively separable. However, since our
theoretical results apply to separable estimates, the estimators
are constrained to be linear, and therefore we define Z(y, z) =
Covl.X, (¥ Z)TICov[(Y Z)T| " (y =) = 2y (y) + 2(2).

We consider the following cases, all using estimators and
WZ transform coders of clean sources:

1) Assume that Y is made available to the encoder estima-
tor, perform conditional linear estimation of X followed
by WZ transform coder of the estimate.

2) Noisy WZ transform coding of Z as shown in Fig. 7.

3) Perform WZ transform coding directly on Z, recon-
struct Z at the decoder and obtain X = (Y, Z).

4) Noisy WZ transform coding of Z as in case 2, except that
2'5:(q},y!) = E[X!|¢]], i.e., the reconstruction function
does not use the side information Y.

Fig. 8 plots rate vs. PSNR for the above cases, with 0‘2/ =
0%, = 25, and 0% = 2730 (measured). The performance

38.251
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38.15

38.1

PSNR (dB)
w
[e°]
o
(%2

38
37.95 - — — -
? -o Conditional estimation and WZ transform coding (Case 1)
, —+— Noisy WZ transform coding of Z (Case 2)
37.9f/ 4 o Direct WZ transform coding of Z (Case 3)
4 - Noisy WZ w/o side-info in reconstruction (Case 4)
37.85—— : : :
15 2 25 3
Rate (bpp)

Fig. 8. WZ transform coding of a noisy image is asymptotically equivalent
to the conditional case.

of conditional estimation (case 1) and WZ transform coding
(case 2) are in close agreement at high rates as predicted by
Theorem 5. Our theory does not explain the behavior at low
rates. Experimentally, we observed that case 2 slightly outper-
forms case 1 at small positive rates. Both these cases show
better rate-distortion performance than direct WZ coding of Z
(case 3). Neglecting the side-information in the reconstruction
function (case 4) is inefficient at low rates, but at high rates,
this simpler scheme approaches the performance of case 2 with
the ideal reconstruction function, thus confirming Corollary 4.

V. CONCLUSIONS

If the conditional expectation of the unseen source data X
given the side information Y and the noisy observation Z is
additively separable, then, at high rates, optimal WZ quantizers
of Z can be decomposed into estimators and lattice quantizers
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for clean sources, achieving the same rate-distortion perfor-
mance as if the side information where available at the encoder.

We propose a WZ transform coder of noisy sources con-
sisting of an estimator and a WZ transform coder for clean
sources. Under certain conditions, in particular if the encoder
estimate is conditionally covariance stationary given Y, the
DCT is an asymptotically optimal transform. The side infor-
mation can be replaced by a sufficient statistic for each of the
Slepian-Wolf decoders and reconstruction functions in each
band, with no asymptotic loss in performance.
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