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Abstract

We extend high-rate quantization theory to Wyner-Ziv coding, i.e., lossy source coding with side information
at the decoder. Ideal Slepian-Wolf coders are assumed, thus rates are conditional entropies of quantization indices
given the side information. This theory is applied to the analysis of orthonormal block transforms for Wyner-Ziv
coding. A formula for the optimal rate allocation and an approximation to the optimal transform are derived. The
case of noisy high-rate quantization and transform coding is included in our study, in which a noisy observation
of source data is available at the encoder, but we are interested in estimating the unseen data at the decoder,
with the help of side information.

We implement a transform-domain Wyner-Ziv video coder that encodes frames independently but decodes
them conditionally. Experimental results show that using the discrete cosine transform results in a rate-distortion
improvement with respect to the pixel-domain coder. Transform coders of noisy images for different communica-
tion constraints are compared. Experimental results show that the noisy Wyner-Ziv transform coder achieves a
performance close to the case in which the side information is also available at the encoder.

Keywords: high-rate quantization, transform coding, side information, Wyner-Ziv coding, distributed source cod-
ing, noisy source coding

1. Introduction

Rate-distortion theory for distributed source
coding [3–6] shows that under certain conditions,
the performance of coders with side information
available only at the decoder is close to the case
in which both encoder and decoder have access
to the side information. Under much more re-
strictive statistical conditions, this also holds for
coding of noisy observations of unseen data [7,8].

One of the many applications of this result is re-
ducing the complexity of video encoders by elimi-
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nating motion compensation, and decoding using
past frames as side information, while keeping the
efficiency close to that of motion-compensated en-
coding [9–11]. In addition, even if the image cap-
tured by the video encoder is corrupted by noise,
we would still wish to recover the clean, unseen
data at the decoder, with the help of side infor-
mation, consisting of previously decoded frames,
and perhaps some additional local noisy image.

In these examples, due to complexity con-
straints in the design of the encoder, or simply
due to the unavailability of the side information
at the encoder, conventional, joint denoising and
coding techniques are not possible. We need prac-
tical systems for noisy source coding with decoder
side information, capable of the rate-distortion
performance predicted by information-theoretic
studies. To this end, it is crucial to extend the
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building blocks of traditional source coding and
denoising, such as lossless coding, quantization,
transform coding and estimation, to distributed
source coding.

It was shown by Slepian and Wolf [3] that loss-
less distributed coding can achieve the same per-
formance as joint coding. Soon after, Wyner and
Ziv [4,12] established the rate-distortion limits for
lossy coding with side information at the decoder,
which we shall refer to as Wyner-Ziv (WZ) cod-
ing. Later, an upper bound on the rate loss due
to the unavailability of the side information at
the encoder was found in [5], which also proved
that for power-difference distortion measures and
smooth source probability distributions, this rate
loss vanishes in the limit of small distortion. A
similar high-resolution result was obtained in [13]
for distributed coding of several sources with-
out side information, also from an information-
theoretic perspective, that is, for arbitrarily large
dimension. In [14] (unpublished), it was shown
that tessellating quantizers followed by Slepian-
Wolf coders are asymptotically optimal in the
limit of small distortion and large dimension.

It may be concluded from the proof of the con-
verse to the WZ rate-distortion theorem [4] that
there is no asymptotic loss in performance by con-
sidering block codes of sufficiently large length,
which may be seen as vector quantizers, followed
by fixed-length coders. This suggests a conve-
nient implementation of WZ coders as quantiz-
ers, possibly preceded by transforms, followed
by Slepian-Wolf coders, analogously to the im-
plementation of nondistributed coders. Practi-
cal distributed lossless coding schemes have been
proposed, e.g., [15–18], that are approaching the
Slepian-Wolf bound.

The first studies on quantizers for WZ cod-
ing were based on high-dimensional nested lat-
tices [19–21], or heuristically designed scalar
quantizers [16,22], often applied to Gaussian
sources, with fixed-length coding or entropy cod-
ing of the quantization indices. A different ap-
proach was followed in [23–26], where the Lloyd
algorithm [27] was generalized for a variety of set-
tings. In particular, [26] considered the important
case of ideal Slepian-Wolf coding of the quantiza-
tion indices, at a rate equal to the conditional

entropy given the side information. In [28–30],
nested lattice quantizers and trellis-coded quan-
tizers followed by Slepian-Wolf coders were used
to implement WZ coders.

The Karhunen-Loève Transform (KLT) [31–
33] for distributed source coding was investigated
in [34,35], but it was assumed that the covariance
matrix of the source vector given the side infor-
mation does not depend on the values of the side
information, and the study was not in the con-
text of a practical coding scheme with quantiz-
ers for distributed source coding. Very recently,
the distributed KLT was studied in the context
of compression of Gaussian source data, assum-
ing that the transformed coefficients are coded at
the information-theoretic rate-distortion perfor-
mance [36,37]. Most of the recent experimental
work on WZ coding uses transforms [38,1,39].

There is extensive literature on source cod-
ing of a noisy observation of an unseen source.
The nondistributed case was studied in [40–42],
and [7,43–45,8] analyzed the distributed case
from an information-theoretic point of view. Us-
ing Gaussian statistics and Mean-Squared Error
(MSE) as a distortion measure, [13] proved that
distributed coding of two noisy observations with-
out side information can be carried out with a
performance close to that of joint coding and de-
noising, in the limit of small distortion and large
dimension. Most of the operational work on dis-
tributed coding of noisy sources, that is, for a
fixed dimension, deals with quantization design
for a variety of settings [46–49], but does not con-
sider the characterization of such quantizers at
high rates or transforms.

A key aspect in the understanding of opera-
tional coding is undoubtedly the theoretic charac-
terization of quantizers at high rates [50], which is
also fundamental in the theoretic study of trans-
forms for data compression [51]. In the litera-
ture reviewed at this point, the studies of high-
rate coding are information theoretic, thereby re-
quiring arbitrarily large dimension, among other
constraints. On the other hand, the aforemen-
tioned studies of transforms applied to compres-
sion are valid only for Gaussian statistics and as-
sume that the transformed coefficients are coded
at the information-theoretic limit.
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In this paper, we provide a theoretic charac-
terization of high-rate WZ quantizers for a fixed
dimension, assuming ideal Slepian-Wolf coding of
the quantization indices, and we apply it to de-
velop a theoretic analysis of orthonormal trans-
forms for WZ coding. Both the case of coding
of directly observed data, and the case of coding
of a noisy observation of unseen data, are consid-
ered. We shall refer to these two cases as coding
of clean sources and noisy sources, respectively.
The material in this paper was presented partially
in [1,2].

Section 2 presents a theoretic analysis of high-
rate quantization of clean sources, and Section 3,
of noisy sources. This analysis is applied to the
study of transforms of the source data in Sec-
tions 4 and 5, also for clean and noisy sources, re-
spectively. Section 6 analyzes the transformation
of the side information itself. In Section 7, exper-
imental results on a video compression scheme
using WZ transform coding, and also on image
denoising, are shown to illustrate the clean and
noisy coding cases.

Throughout the paper, we follow the conven-
tion of using uppercase letters for random vari-
ables, including random scalars and vectors, and
lowercase letters for the particular values that
they take on. Let X be a random variable, dis-
crete or continuous, possibly vector valued. Its
probability function will be denoted by pX(x),
whether it is a probability mass function (PMF)
or a probability density function (PDF)(a). For
notational convenience, the covariance opera-
tor Cov and the letter Σ will be used interchange-
ably. For example, the conditional covariance of
X| y is the matrix function ΣX|Y (y) = Cov[X| y].

2. High-Rate WZ Quantization of Clean Sources

We study the properties of high-rate quantizers
for the WZ coding setting in Fig. 1. The source
data to be quantized is modeled by a continuous
random vector X of finite dimension n. Let the
quantization function q(x) map the source data
into the quantization index Q. A random vari-
able Y , distributed in an arbitrary alphabet, dis-

(a)As a matter of fact, a PMF is a PDF with respect to
the counting measure.

( )q x ˆ( , )x q y
X Q X̂

Y

Fig. 1. WZ quantization.

crete or continuous, plays the role of side infor-
mation, available only at the receiver. The side
information and the quantization index are used
jointly to estimate the source data. Let X̂ repre-
sent this estimate, obtained with the reconstruc-
tion function x̂(q, y).

MSE is used as a distortion measure, thus
the expected distortion per sample is D =
1
n E ‖X − X̂‖2. The formulation in this work as-
sumes that the coding of the index Q with side
information Y is carried out by an ideal Slepian-
Wolf coder. The expected rate per sample is de-
fined accordingly as R = 1

n H(Q|Y ) [26]. We em-
phasize that the quantizer only has access to the
source data, not to the side information. How-
ever, the joint statistics of X and Y are assumed
to be known, and are exploited in the design of
q(x) and x̂(q, y). We consider the problem of
characterizing the quantization and reconstruc-
tion functions that minimize the expected La-
grangian cost C = D+ λR, with λ a nonnegative
real number, for high rate R.

The theoretic results are presented in Theo-
rem 1. The theorem holds if the Bennett as-
sumptions [52,53] apply to the conditional PDF
pX|Y (x| y) for each value of the side informa-
tion y, and if Gersho’s conjecture [54] is true
(known to be the case for n = 1), among other
technical conditions, mentioned in [50]. For a rig-
orous treatment of high-rate theory that does not
rely on Gersho’s conjecture, see [55,56].

We shall use the term uniform tessellating
quantizer in reference to quantizers whose quan-
tization regions are possibly rotated versions of
a common convex polytope, with equal volume.
Lattice quantizers are, strictly speaking, a par-
ticular case. In the following results, Gersho’s
conjecture for nondistributed quantizers, which
allows rotations, will be shown to imply that op-
timal WZ quantizers are also tessellating quan-



4 D. Rebollo-Monedero, S. Rane, A. Aaron, B. Girod

tizers, and the uniformity of the cell volume will
be proved as well(b). Mn denotes the minimum
normalized moment of inertia of the convex poly-
topes tessellating R

n (e.g., M1 = 1/12).

Theorem 1 (High-rate WZ quantization). Sup-
pose that for each value y in the alphabet of Y ,
the statistics of X given Y = y are such that
the conditional differential entropy h(X| y) ex-
ists and is finite. Suppose further that for
each y, there exists an asymptotically optimal
entropy-constrained uniform tessellating quan-
tizer of x, q(x| y), with rate RX|Y (y) and distor-
tion DX|Y (y), with no two cells assigned to the
same index and with cell volume V (y) > 0, which
satisfies, for large RX|Y (y),

DX|Y (y) � Mn V (y)
2
n , (1)

RX|Y (y) � 1
n (h(X| y) − log2 V (y)) , (2)

DX|Y (y) � Mn 2
2
n h(X|y) 2−2RX|Y (y). (3)

Then, there exists an asymptotically optimal
quantizer q(x) for large R, for the WZ coding set-
ting considered such that:

1. q(x) is a uniform tessellating quantizer with
minimum moment of inertia Mn and cell
volume V .

2. No two cells of the partition defined by q(x)
need to be mapped into the same quantiza-
tion index.

3. The rate and distortion satisfy

D � Mn V
2
n , (4)

R � 1
n (h(X|Y ) − log2 V ) , (5)

D � Mn 2
2
n h(X|Y ) 2−2R. (6)

Proof: The proof uses the quantization setting
in Fig. 2, which we shall refer to as a conditional
(b)A tessellating quantizer need not be uniform. A triv-
ial example is a partition of the real line into intervals of
different length. In 1 dimension, uniform tesselating quan-
tizers are uniform lattice quantizers. It is easy to construct
simple examples in R

2 of uniform and nonuniform tesse-
lating quantizers that are not lattice quantizers using rec-
tangles. However, the optimal nondistributed, fixed-rate
quantizers for dimensions 1 and 2 are known to be lattices:
the Z-lattice and the hexagonal lattice respectively.

quantizer, along with an argument of optimal rate
allocation for the family of quantizers q(x| y). In

( | )q x y ˆ( , )x q y
X Q X̂

Y

Fig. 2. Conditional quantizer.

this case, the side information Y is available to
the sender, and the design of the quantization
function q(x| y) on x, for each value y, is a nondis-
tributed entropy-constrained quantization prob-
lem. More precisely, for all y define

DX|Y (y) = 1
n E[‖X − X̂‖2| y],

RX|Y (y) = 1
n H(Q| y),

CX|Y (y) = DX|Y (y) + λRX|Y (y).

By iterated expectation, D = EDX|Y (Y ) and
R = ERX|Y (Y ), thus the overall cost satisfies
C = E CX|Y (Y ). As a consequence, a family of
quantizers q(x| y) minimizing CX|Y (y) for each y
also minimizes C.

Since CX|Y (y) is a convex function of RX|Y (y)
for all y, it has a global minimum where its deriv-
ative vanishes, or equivalently, at RX|Y (y) such
that λ � 2 ln 2DX|Y (y). Suppose that λ is small
enough for RX|Y (y) to be large and for the ap-
proximations (1)-(3) to hold, for each y. Then, all
quantizers q(x| y) introduce the same distortion
(proportional to λ) and consequently have a com-
mon cell volume V (y) � V . This, together with
the fact that EY [h(X| y)]y=Y = h(X|Y ), implies
(4)-(6). Provided that a translation of the parti-
tion defined by q(x| y) affects neither the distor-
tion nor the rate, all uniform tessellating quantiz-
ers q(x| y) may be set to be (approximately) the
same, which we denote by q(x). Since none of the
quantizers q(x| y) maps two cells into the same
indices, neither does q(x). Now, since q(x) is
asymptotically optimal for the conditional quan-
tizer and does not depend on y, it is also optimal
for the WZ quantizer in Fig. 1. �

Equation (6) means that, asymptotically, there
is no loss in performance by not having access to
the side information in the quantization.
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Corollary 2 (High-rate WZ reconstruction). Un-
der the hypotheses of Theorem 1, asymptotically,
there is a quantizer that leads to no loss in per-
formance by ignoring the side information in the
reconstruction.

Proof: Since index repetition is not required, the
distortion (4) would be asymptotically the same if
the reconstruction x̂(q, y) were of the form x̂(q) =
E[X| q]. �

Corollary 3. Let X and Y be jointly Gaussian
random vectors. Then, the conditional covari-
ance ΣX|Y does not depend on y, and for large R,

D � Mn 2πe (det ΣX|Y )
1
n 2−2R

−−−−→
n→∞ (det ΣX|Y )

1
n 2−2R.

Proof: Use h(X|Y ) = 1
2 log2

(
(2πe)n det ΣX|Y

)
,

and Mn → 1
2πe [57], together with Theorem 1. �

3. High-Rate WZ Quantization of Noisy Sources

In this section, we study the properties of high-
rate quantizers of a noisy source with side infor-
mation at the decoder, as illustrated in Fig. 3,
which we shall refer to as WZ quantizers of a
noisy source. A noisy observation Z of some un-

( )q z ˆ( , )x q y
Z Q X̂

Y
Fig. 3. WZ quantization of a noisy source.

seen source data X is quantized at the encoder.
The quantizer q(z) maps the observation into a
quantization index Q. The quantization index is
losslessly coded, and used jointly with some side
information Y , available only at the decoder, to
obtain an estimate X̂ of the unseen source data.
x̂(q, y) denotes the reconstruction function at the
decoder. X, Y and Z are random variables with
known joint distribution, such that X is a con-
tinuous random vector of finite dimension n. No
restrictions are imposed on the alphabets of Y
and Z.

MSE is used as a distortion measure, thus
the expected distortion per sample of the unseen
source is D = 1

n E ‖X − X̂‖2. As in the previ-
ous section, it is assumed that the coding of the
index Q is carried out by an ideal Slepian-Wolf
coder, at rate per sample R = 1

n H(Q|Y ). We
emphasize that the quantizer only has access to
the observation, not to the source data or the side
information. However, the joint statistics of X,
Y and Z can be exploited in the design of q(z)
and x̂(q, y). We consider the problem of charac-
terizing the quantizers and reconstruction func-
tions that minimize the expected Lagrangian cost
C = D + λR, with λ a nonnegative real number,
for high rate R. This includes the problem in the
previous section as the particular case Z = X.

3.1. Nondistributed Case

We start by considering the simpler case of
quantization of a noisy source without side in-
formation, depicted in Fig. 4. The following

( )q z ˆ( )x q
Z Q X̂

Fig. 4. Quantization of a noisy source without side infor-
mation.

theorem extends the main result of [41,42] to
entropy-constrained quantization, valid for any
rate R = H(Q), not necessarily high. Define
x̄(z) = E[X| z], the best MSE estimator of X
given Z, and X̄ = x̄(Z).

Theorem 4 (MSE noisy quantization). For any
nonnegative λ and any Lagrangian-cost optimal
quantizer of a noisy source without side infor-
mation (Fig. 4), there exists an implementation
with the same cost in two steps:

1. Obtain the minimum MSE estimate X̄.

2. Quantize the estimate X̄ regarded as a
clean source, using a quantizer q(x̄) and
a reconstruction function x̂(q), minimizing
E ‖X̄ − X̂‖2 + λ H(Q).

This is illustrated in Fig. 5. Furthermore, the
total distortion per sample is

D = 1
n (E tr Cov[X|Z] + E ‖X̄ − X̂‖2), (7)
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where the first term is the MSE of the estimation
step.

( )q x ˆ( )x q
X Q X̂

E[ | ]X z
Z

Fig. 5. Optimal implementation of MSE quantization of a
noisy source without side information.

Proof: The proof is a modification of that in [42],
replacing distortion by Lagrangian cost. De-
fine the modified distortion measure d̃(z, x̂) =
E[‖X − x̂‖2| z]. Since X ↔ Z ↔ X̂, it is easy
to show that E ‖X − X̂‖2 = E d̃(Z, X̂). By the
orthogonality principle of linear estimation,

d̃(z, x̂) = E[‖X − x̄(z)‖2| z] + ‖x̄(z) − x̂‖2.

Take expectation to obtain (7). Note that the
first term of (7) does not depend on the quantiza-
tion design, and the second is the MSE between X̄
and X̂.

Let r(q) be the codeword length function of
a uniquely decodable code, that is, satisfying∑

q 2−r(q) � 1, with R = E r(Q). The La-
grangian cost of the setting in Fig. 4 can be writ-
ten as

C = 1
n (E tr Cov[X|Z]+

+ inf
x̂(q),r(q)

E inf
q
{‖x̄(Z) − x̂(q)‖2 + λ r(q)}),

and the cost of the setting in Fig. 5 as

C = 1
n (E tr Cov[X|Z]+

+ inf
x̂(q),r(q)

E inf
q
{‖X̄ − x̂(q)‖2 + λ r(q)}),

which give the same result. Now, since the ex-
pected rate is minimized for the (admissible) rate
measure r(q) = − log pQ(q) and E r(Q) = H(Q),
both settings give the same Lagrangian cost with
a rate equal to the entropy. �

Similarly to the remarks on Theorem 1, the
hypotheses of the next theorem are believed to
hold if the Bennett assumptions apply to the PDF
pX̄(x̄) of the MSE estimate, and if Gersho’s con-
jecture is true among other technical conditions.

Theorem 5 (High-rate noisy quantization). As-
sume that h(X̄) < ∞ and that there exists a uni-
form tessellating quantizer q(x̄) of X̄ with cell
volume V that is asymptotically optimal in La-
grangian cost at high rates. Then, there exists an
asymptotically optimal quantizer q(z) of a noisy
source in the setting of Fig. 4 such that:

1. An asymptotically optimal implementation
of q(z) is that of Theorem 4, represented
in Fig. 5, with a uniform tessellating quan-
tizer q(x̄) having cell volume V .

2. The rate and distortion per sample satisfy

D � 1
n E tr Cov[X|Z] + Mn V

2
n ,

R � 1
n (h(X̄) − log2 V ),

D � 1
n E tr Cov[X|Z] + Mn 2

2
n h(X̄) 2−2R.

Proof: Immediate from Theorem 4 and conven-
tional theory of high-rate quantization of clean
sources. �

3.2. Distributed Case

We are now ready to consider the WZ quan-
tization of a noisy source in Fig. 3. Define
x̄(y, z) = E[X| y, z], the best MSE estimator
of X given Y and Z, X̄ = x̄(Y,Z), and D∞ =
1
n E tr Cov[X|Y,Z]. The following theorem ex-
tends the results on high-rate WZ quantization
in Section 2 to noisy sources. The remark on
the hypotheses of Theorem 5 also applies here,
where the Bennett assumptions apply instead to
the conditional PDF pX̄|Y (x̄| y) for each y.

Theorem 6 (High-rate noisy WZ quantization).
Suppose that the conditional expectation func-
tion x̄(y, z) is additively separable, i.e., x̄(y, z) =
x̄Y (y) + x̄Z(z), and define X̄Z = x̄Z(Z). Sup-
pose further that for each value y in the alpha-
bet of Y , h(X̄| y) < ∞, and that there exists a
uniform tessellating quantizer q(x̄, y) of X̄, with
no two cells assigned to the same index and cell
volume V (y) > 0, with rate RX̄|Y (y) and dis-
tortion DX̄|Y (y), such that, at high rates, it is
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asymptotically optimal in Lagrangian cost and

DX̄|Y (y) � Mn V (y)
2
n ,

RX̄|Y (y) � 1
n

(
h(X̄| y) − log2 V (y)

)
,

DX̄|Y (y) � Mn 2
2
n h(X̄|y) 2−2RX̄|Y (y).

Then, there exists an asymptotically optimal
quantizer q(z) for large R, for the WZ quanti-
zation setting represented in Fig. 3 such that:

1. q(z) can be implemented as an estimator
x̄Z(z) followed by a uniform tessellating
quantizer q(x̄Z) with cell volume V .

2. No two cells of the partition defined by
q(x̄Z) need to be mapped into the same
quantization index.

3. The rate and distortion per sample satisfy

D � D∞ + Mn V
2
n , (8)

R � 1
n (h(X̄|Y ) − log2 V ), (9)

D � D∞ + Mn 2
2
n h(X̄|Y ) 2−2R. (10)

4. h(X̄|Y ) = h(X̄Z |Y ).

Proof: The proof is similar to that for clean
sources in Theorem 1 and only the differences are
emphasized. First, as in the proof of WZ quanti-
zation of a clean source, a conditional quantiza-
tion setting is considered, as represented in Fig. 6.
An entirely analogous argument using conditional
costs, as defined in the proof for clean sources,
implies that the optimal conditional quantizer is
an optimal conventional quantizer for each value
of y. Therefore, using statistics conditioned on y

( , )q z y ˆ( , )x q y
Z Q X̂

Y
Fig. 6. Conditional quantization of a noisy source.

everywhere, by Theorem 4, the optimal condi-
tional quantizer can be implemented as in Fig. 7,

with conditional costs

DX|Y (y) � 1
n E[tr Cov[X| y, Z]| y] + Mn V (y)

2
n ,

RX|Y (y) � 1
n (h(X̄| y) − log2 V (y)),

DX|Y (y) � 1
n E[tr Cov[X| y, Z]| y]+

+ Mn 2
2
n h(X̄|y) 2−2RX|Y (y).

The derivative of CX|Y (y) with respect to

( , )q x y ˆ( , )x q y
X Q X̂

E[ , ]X y z
Z

Y
Fig. 7. Optimal implementation of MSE conditional quan-
tization of a noisy source.

RX|Y (y) vanishes when λ � 2 ln 2Mn V (y)
2
n ,

which, as in the proof for clean sources, implies
that all conditional quantizers have a common
cell volume V (y) � V (however, only the second
term of the distortion is constant, not the over-
all distortion). Taking expectation of the condi-
tional costs proves that (8) and (9) are valid for
the conditional quantizer of Fig. 7. The validity
of (10) for the conditional quantizer can be shown
by solving for V in (9) and substituting the result
into (8).

The assumption that x̄(y, z) = x̄Y (y) + x̄Z(z)
means that for two values of y, y1 and y2, x̄(y1, z)
and x̄(y2, z), seen as functions of z, differ only by
a constant vector. Since the conditional quantizer
of X̄, q(x̄| y), is a uniform tessellating quantizer
at high rates, a translation will neither affect the
distortion nor the rate, and therefore x̄(y, z) can
be replaced by x̄Z(z) with no impact on the La-
grangian cost. In addition, since all conditional
quantizers have a common cell volume, the same
translation argument implies that a common un-
conditional quantizer q(x̄Z) can be used instead,
with performance given by (8)-(10), and since
conditional quantizers do not reuse indices, nei-
ther does the common unconditional quantizer.

The last item of the theorem follows from the
fact that h(x̄Y (y) + X̄Z | y) = h(X̄Z | y). �

Clearly, the theorem is a generalization of The-
orem 1, since Z = X implies x̄(y, z) = x̄Z(z) = z,
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trivially additively separable.
The case in which X can be written as X =

f(Y ) + g(Z) + N , for any (measurable) func-
tions f , g and any random variable N with
E[N | y, z] constant with (y, z), gives an exam-
ple of additively separable estimator. This in-
cludes the case in which X, Y and Z are jointly
Gaussian. Furthermore, in the Gaussian case,
since x̄Z(z) is an affine function and q(x̄Z) is a
uniform tessellating quantizer, the overall quan-
tizer q(x̄Z(z)) is also a uniform tessellating quan-
tizer, and if Y and Z are uncorrelated, then
x̄Y (y) = E[X| y] and x̄Z(z) = E[X| z], but not
in general.

Observe that, according to the theorem, if the
estimator x̄(y, z) is additively separable, there is
no asymptotic loss in performance by not using
the side information at the encoder.

Corollary 7. Assume the hypotheses of Theo-
rem 6, and that the optimal reconstruction lev-
els ˆ̄x(q, y) for each of the conditional quantizers
q(x̄, y) are simply the centroids of the quantiza-
tion cells for a uniform distribution. Then, there
is a WZ quantizer q(x̄Z) that leads to no as-
ymptotic loss in performance if the reconstruction
function is x̂(q, y) = ˆ̄xZ(q) + x̄Y (y), where ˆ̄xZ(q)
are the centroids of q(x̄Z).

Proof: In the proof of Theorem 6, q(x̄Z) is a uni-
form tessellating quantizer without index repeti-
tion, a translated copy of q(x̄, y). �

Theorem 6 and Corollary 7 show that the WZ
quantization setting of Fig. 3 can be implemented
as depicted in Fig. 8, where ˆ̄xZ(q, y) can be made
independent from y without asymptotic loss in
performance, so that the pair q(x̄Z), ˆ̄xZ(q) form
a uniform tessellating quantizer and reconstructor
for X̄Z .

( )Zq x ˆ ( , )Zx q y
ZX Q ˆ

ZX( )Zx z
Z

Y
( )Yx y

X̂

Fig. 8. Asymptotically optimal implementation of MSE
WZ quantization of a noisy source with additively separa-
ble x̄(y, z).

Finally, if x̄Z(z) is a bijective vector field, then,
under mild conditions, including continuous dif-
ferentiability of x̄Z(z) and its inverse, it can be
shown that h(X̄|Y ) in Theorem 6 satisfies

h(X̄|Y ) = h(Z|Y ) + E log2

∣∣det dx̄Z

dz (Z)
∣∣ ,

where dx̄Z(z)/dz denotes the Jacobian matrix
of x̄Z(z).

4. WZ Transform Coding of Clean Sources

The following intermediate definitions and re-
sults will be useful to analyze (linear) orthonor-
mal transforms for WZ coding. Define the geo-
metric expectation of a positive random scalar S
as G S = bE logb S , for any positive real b different
from 1. Note that if S were discrete with proba-
bility mass function pS(s), then GS =

∏
s spS(s).

The constant factor in the rate-distortion approx-
imation (3) can be expressed as

Mn 2
2
n h(X|y) = ε2X|Y (y)

(
det ΣX|Y (y)

)1/n
,

where ε2X|Y (y) depends only on Mn and
pX|Y (x| y), normalized with covariance identity.
If h(X| y) is finite, then

ε2X|Y (y)
(
det ΣX|Y (y)

)1/n
> 0,

and since GY [2
2
n [h(X|y)]y=Y ] = 2

2
n h(X|Y ), (6) is

equivalent to

D � G[ε2X|Y (Y )] G[
(
det ΣX|Y (Y )

)1/n] 2−2R.

We are now ready to consider the transform
coding setting in Fig. 9. Let X = (X1, . . . , Xn)
be a continuous random vector of finite dimen-
sion n, modeling source data, and let Y be an
arbitrary random variable playing the role of side
information available at the decoder, for instance,
a random vector of dimension possibly different
from n. The source data undergo an orthogonal
transform represented by the matrix U , precisely,
X ′ = UT X. Each transformed component X ′

i

is coded individually with a scalar WZ quantizer
(represented in Fig. 1). The quantization index is
assumed to be coded with an ideal Slepian-Wolf
coder, abbreviated as SWC in Fig. 9. The (entire)
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Fig. 9. Transformation of the source vector.

side information Y is used for Slepian-Wolf decod-
ing and reconstruction to obtain the transformed
estimate X̂ ′, which is inversely transformed to re-
cover an estimate of the original source vector ac-
cording to X̂ = U X̂ ′.

The expected distortion in subband i is Di =
E (X ′

i − X̂ ′
i)

2. The rate required to code the
quantization index Q′

i is Ri = H(Q′
i|Y ). De-

fine the total expected distortion per sample as
D = 1

n E ‖X − X̂‖2, and the total expected rate
per sample as R = 1

n

∑
i Ri. We wish to mini-

mize the Lagrangian cost C = D + λR.
Define the expected conditional covariance

Σ̄X|Y = EΣX|Y (Y ) = EY Cov[X|Y ]. Note that
Σ̄X|Y is the covariance of the error of the best
estimate of X given Y , i.e., E[X|Y ]. In fact, the
orthogonality principle of conditional estimation
implies

Σ̄X|Y + Cov E[X|Y ] = Cov X,

thus Σ̄X|Y � Cov X, with equality if and only if
E[X|Y ] is a constant with probability 1.

Theorem 8 (WZ transform coding). Assume Ri

large so that the results for high-rate approxima-
tion of Theorem 1 can be applied to each subband
in Fig. 9, i.e.,

Di � 1
12 22 h(X′

i|Y ) 2−2Ri . (11)

Suppose further that the change of the shape
of the PDF of the transformed components
with the choice of U is negligible so that∏

i G ε2X′
i|Y (Y ) may be considered constant, and

that Var σ2
X′

i|Y (Y ) � 0, which means that the

variance of the conditional distribution does not
change significantly with the side information.

Then, minimization of the overall Lagrangian
cost C is achieved when the following conditions
hold:

1. All bands have a common distortion D. All
quantizers are uniform, without index repe-
tition, and with a common interval width Δ
such that D � 1

12Δ2.

2. D � 1
12 22

1
n
�

i h(X′
i|Y ) 2−2R.

3. An optimal choice of U is one that diago-
nalizes Σ̄X|Y , that is, it is the KLT for the
expected conditional covariance matrix.

4. The transform coding gain δT, which we de-
fine as the inverse of the relative decrease of
distortion due to the transform, satisfies

δT �
∏

i G[σ2
Xi|Y (Y )]1/n

∏
i G[σ2

X′
i|Y (Y )]1/n

�

�
∏

i G[σ2
Xi|Y (Y )]1/n

(
det Σ̄X|Y

)1/n
.

Proof: Since U is orthogonal, D = 1
n

∑Di. The
minimization of the overall Lagrangian cost

C = 1
n

∑
i

Di + λRi

yields a common distortion condition, Di � D
(proportional to λ). Equation (11) is equivalent
to

Di � G[ε2X′
i|Y (Y )] G[σ2

X′
i|Y (Y )] 2−2Ri .

Since Di � D for all i, then D =
∏

i D1/n
i and

D �
∏

i

G[ε2X′
i|Y (Y )]1/n ·

·
∏

i

G[σ2
X′

i|Y (Y )]1/n 2−2R, (12)

which is equivalent to Item 2 in the statement
of the theorem. The fact that all quantizers are
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uniform and the interval width satisfies D = 1
12Δ2

is a consequence of Theorem 1 for one dimension.
For any positive random scalar S such that

Var S � 0, it can be shown that GS � ES. It is
assumed in the theorem that Var σ2

X′
i|Y (Y ) � 0,

hence

G σ2
X′

i|Y (Y ) � E σ2
X′

i|Y (Y ).

This, together with the assumption that∏
i G ε2X′

i|Y (Y ) may be considered constant, im-
plies that the choice of U that minimizes the dis-
tortion (12) is approximately equal to that mini-
mizing

∏
i E σ2

X′
i|Y (Y ).

Σ̄X|Y is nonnegative definite. The spectral de-
composition theorem implies that there exists an
orthogonal matrix ŪX|Y and a nonnegative def-
inite diagonal matrix Λ̄X|Y such that Σ̄X|Y =
ŪX|Y Λ̄X|Y ŪT

X|Y . On the other hand,

∀y ΣX′|Y (y) = UT ΣX|Y (y)U ⇒
⇒ Σ̄X′|Y = UT Σ̄X|Y U,

where a notation analogous to that of X is used
for X ′.

Finally, from Hadamard’s inequality and the
fact that U is orthogonal, it follows that
∏

i

E σ2
X′

i|Y (Y ) � det Σ̄X′|Y = det Σ̄X|Y .

Since U = ŪX|Y implies that Σ̄X′|Y = Λ̄X|Y ,
we conclude that the distortion is minimized pre-
cisely for that choice of U . The expression for the
transform coding gain follows immediately. �

Corollary 9 (Gaussian case). If X and Y are
jointly Gaussian random vectors, then it is only
necessary to assume the high-rate approximation
hypothesis of Theorem 8, in order for it to hold.
Furthermore, if DVQ and RVQ denote the distor-
tion and the rate when an optimal vector quan-
tizer is used, then we have:

1. Σ̄X|Y = ΣX − ΣXY Σ−1
Y ΣT

XY .

2. h(X|Y ) =
∑

i h(X ′
i|Y ).

3. D
DVQ

� 1/12
Mn

−−−−→
n→∞

πe
6 � 1.53 dB.

4. R − RVQ � 1
2 log2

1/12
Mn

−−−−→
n→∞

1
2 log2

πe
6 �

0.25 b/s.

Proof: Conditionals of Gaussian random vec-
tors are Gaussian, and linear transforms preserve
Gaussianity, thus

∏
i G ε2X′

i|Y (Y ), which depends
only on the type of PDF, is constant with U . Fur-
thermore,

ΣX|Y (y) = ΣX − ΣXY Σ−1
Y ΣT

XY ,

constant with y, hence Var σ2
X′

i|Y (Y ) = 0. The
differential entropy identity follows from the fact
that for Gaussian random vectors (conditional)
independence is equivalent to (conditional) un-
correlatedness, and that this is the case for each y.
To complete the proof, apply Corollary 3. �

The conclusions and the proof of the previous
corollary are equally valid if we only require that
X| y be Gaussian for every y, and ΣX|Y (y) be
constant.

As an additional example with Varσ2
X′

i|Y (Y ) =
0, consider X = f(Y ) + N , for any (measurable)
function f , and assume that N and Y are inde-
pendent random vectors. ΣX′|Y (y) = UT ΣN U ,
constant with y. If in addition, N is Gaussian,
then so is X| y.

Corollary 10 (DCT). Suppose that for each y,
ΣX|Y (y) is Toeplitz with a square summable as-
sociated autocorrelation so that it is also asymp-
totically circulant as n → ∞. In terms of the
associated random process, this means that Xi is
conditionally covariance stationary given Y , that
is, (Xi−E[Xi| y]| y)i∈Z is second-order stationary
for each y. Then, it is not necessary to assume
that Var σ2

X′
i|Y (Y ) � 0 in Theorem 8 in order for

it to hold, with the following modifications for U
and δT:

1. The Discrete Cosine Transform (DCT) is
an asymptotically optimal choice for U (c).

2. The transform coding gain is given by

δT � G δT(Y ), δT(Y ) =

∏
i σ2

Xi|Y (Y )1/n

(
det ΣX|Y (Y )

)1/n
.

(c)Precisely, UT is the analysis DCT matrix, and U the
synthesis DCT matrix.
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Proof: The proof proceeds along the same lines
of that of Theorem 8, observing that the DCT
matrix asymptotically diagonalizes ΣX|Y (y) for
each y, since it is symmetric and asymptotically
circulant [58, Chapter 3]. �

Observe that the coding performance of the
cases considered in Corollaries 9 and 10 would be
asymptotically the same if the transform U were
allowed to be a function of y.

We would like to remark that there are sev-
eral ways by which the transform coding gain in
Item 4 of the statement of Theorem 8, and also
in Item 2 of Corollary 10, can be manipulated to
resemble an arithmetic-geometric mean ratio in-
volving the variances of the transform coefficients.
This is consistent with the fact that the transform
coding gain is indeed a gain. The following corol-
lary is an example.

Corollary 11. Suppose, in addition to the hypothe-
ses of Theorem 8, that σ2

Xi|Y (y) = σ2
X0|Y (y) for

all i = 1, . . . , n, and for all y. This can be under-
stood as a weakened version of the conditional co-
variance stationarity assumption in Corollary 10.
Then, the transform coding gain satisfies

δT � G δT(Y ), δT(Y ) =
1
n

∑
i σ2

X′
i|Y (Y )∏

i σ2
X′

i|Y (Y )1/n
.

Proof: Define

δT(y) =

∏
i σ2

Xi|Y (y)1/n

∏
i σ2

X′
i|Y (y)1/n

.

According to Theorem 8, it is clear that δT �
G δT(Y ). Now, for each y, since by assumption
the conditional variances are constant with i, the
numerator of δT(y) satisfies
∏

i

σ2
Xi|Y (y)1/n = σ2

X0|Y (y) = 1
n

∑
i

σ2
Xi|Y (y).

Finally, since X ′ = UTX and U is orthonormal,
∑

i

σ2
Xi|Y (y) = E[‖X − E[X| y]‖2| y] =

= E[‖X ′ − E[X ′| y]‖2| y] =
∑

i

σ2
X′

i|Y (y). �

5. WZ Transform Coding of Noisy Sources

5.1. Fundamental Structure

If x̄(y, z) is additively separable, the asymp-
totically optimal implementation of a WZ quan-
tizer established by Theorem 6 and Corollary 7,
illustrated in Fig. 8, suggests the transform cod-
ing setting represented in Fig. 10. In this set-
ting, the WZ uniform tessellating quantizer and
reconstructor for X̄Z , regarded as a clean source,
have been replaced by a WZ transform coder of
clean sources, studied in Section 4. The trans-
form coder is a rotated, scaled Z-lattice quan-
tizer, and the translation argument used in the
proof of Theorem 6 still applies. By this argu-
ment, an additively separable encoder estimator
x̄(y, z) can be replaced by an encoder estimator
x̄Z(z) and a decoder estimator x̄Y (y) with no loss
in performance at high rates.

The transform coder acts now on X̄Z , which
undergoes the orthonormal transformation X̄ ′

Z =
UTX̄Z . Each transformed coefficient X̄ ′

Z i is
coded separately with a WZ scalar quantizer (for
a clean source), followed by an ideal Slepian-
Wolf coder (SWC), and reconstructed with the
help of the (entire) side information Y . The re-
construction ˆ̄X ′

Z is inversely transformed to ob-
tain ˆ̄XZ = U ˆ̄X ′

Z . The final estimate of X is
X̂ = x̄Y (Y ) + ˆ̄XZ . Clearly, the last summation
could be omitted by appropriately modifying the
reconstruction functions of each subband. All the
definitions of the previous section are maintained,
except for the overall rate per sample, which is
now R = 1

n

∑Ri, where Ri is the rate of the

ith subband. D̄ = 1
n E ‖X̄Z − ˆ̄XZ‖2 denotes the

distortion associated with the clean source X̄Z .
The decomposition of a WZ transform coder of

a noisy source into an estimator and a WZ trans-
form coder of a clean source allows the direct ap-
plication of the results for WZ transform coding
of clean sources in Section 4.

Theorem 12 (Noisy WZ transform coding). Sup-
pose x̄(y, z) is additively separable. Assume the
hypotheses of Theorem 8 for X̄Z . In summary,
assume that the high-rate approximation hypothe-
ses for WZ quantization of clean sources hold for
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Fig. 10. WZ transform coding of a noisy source.

each subband, the change in the shape of the PDF
of the transformed components with the choice of
the transform U is negligible, and the variance
of the conditional distribution of the transformed
coefficients given the side information does not
change significantly with the values of the side
information. Then, there exists a WZ transform
coder, represented in Fig. 10, asymptotically op-
timal in Lagrangian cost, such that:

1. All bands introduce the same distortion D̄.
All quantizers are uniform, without index
repetition, and with a common interval
width Δ such that D̄ � Δ2/12.

2. D = D∞ + D̄, D̄ � 1
12 2

2
n
�

i h(X̄′
Zi|Y ) 2−2R.

3. U diagonalizes E Cov[X̄Z |Y ], i.e., is the
KLT for the expected conditional covariance
matrix of X̄Z .

Proof: Apply Theorem 8 to X̄Z . Note that since
X̄ = X̄Y + X̄Z and X̂ = X̄Y + ˆ̄XZ , then X̄Z −
ˆ̄XZ = X̄ − ˆ̄X, and use (7) for (Y,Z) instead of Z
to prove Item 2. �

Similarly to Theorem 6, since X̄| y = x̄Y (y) +
X̄Z | y, h(X̄ ′

Zi|Y ) = h(X̄ ′
i|Y ). In addition,

D̄ = 1
n E ‖X̄ − ˆ̄X‖2 and E Cov[X̄Z |Y ] =

E Cov[X̄|Y ] � Cov X̄.

Corollary 13 (Gaussian case). If X, Y and Z are
jointly Gaussian random vectors, then it is only
necessary to assume the high-rate approximation
hypotheses of Theorem 12, in order for it to hold.
Furthermore, if DVQ denotes the distortion when

the optimal vector quantizer of Fig. 8 is used, then

D −D∞
DVQ −D∞

� 1/12
Mn

−−−−→
n→∞

πe

6
� 1.53 dB.

Proof: x̄(y, z) is additively separable. Apply
Corollary 9 to X̄Z and Y , which are jointly
Gaussian. �

Corollary 14 (DCT). Suppose that x̄(y, z) is addi-
tively separable and that for each y, Cov[X̄| y] =
Cov[X̄Z | y] is Toeplitz with a square summable
associated autocorrelation so that it is also as-
ymptotically circulant as n → ∞. In terms of
the associated random processes, this means that
X̄i (equivalently, X̄Zi) is conditionally covariance
stationary given Y , i.e., ((X̄i −E[X̄i| y])| y)i∈Z is
second-order stationary for each y.

Then, it is not necessary to assume in Theo-
rem 12 that the conditional variance of the trans-
formed coefficients is approximately constant with
the values of the side information in order for it
to hold, and the DCT is an asymptotically opti-
mal choice for U .

Proof: Apply Corollary 10 to X̄Z and Y . �
We remark that the coding performance of the

cases considered in Corollaries 13 and 14 would
be asymptotically the same if the transform U
and the encoder estimator x̄Z(z) were allowed to
depend on y.

For any random vector Y , set X = f(Y )+Z +
NX and Z = g(Y )+NZ , where f , g are any (mea-
surable) functions, NX is a random vector such
that E[NX | y, z] is constant with (y, z), and NZ

is a random vector independent from Y such that
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Cov NZ is Toeplitz. Cov[X̄| y] = Cov[Z| y] =
Cov NZ , thus this is an example of constant
conditional variance of transformed coefficients
which, in addition, satisfies the hypotheses of
Corollary 14.

5.2. Variations on the Fundamental Structure

The fundamental structure of the noisy WZ
transform coder analyzed can be modified in a
number of ways. We now consider variations
on the encoder estimation and transform for this
structure, represented completely in Fig. 10, and
partially in Fig. 11(a). Later, in Section 6, we
shall focus on variations involving the side infor-
mation.

A general variation consists of performing the
encoder estimation in the transform domain.
More precisely, define Z ′ = UTZ, X̄ ′

Z = UTX̄Z

and x̄′
Z(z′) = UTx̄Z(Uz′) for all z′. Then, the en-

coder estimator satisfies x̄Z(z) = Ux̄′
Z(UTz), as

illustrated in Fig. 11(b). Since UUT = I, the es-
timation and transform UTx̄Z(z) can be written
simply as x̄′

Z(UTz), as shown in Fig. 11(c).
The following informal argument will suggest

a convenient transform-domain estimation struc-
ture. Suppose that X, Y and Z are zero-mean,
jointly wide-sense stationary random processes.
Suppose further that they are jointly Gaussian,
or, merely for simplicity, that a linear estimator
of X given ( Y

Z ) is required. Then, under cer-
tain regularity conditions, a vector Wiener filter
(hY hZ) can be used to obtain the best linear es-
timate X̄:

X̄(n) = (hY hZ)(n) ∗ ( Y
Z ) (n) =

= hY (n) ∗ Y (n) + hZ(n) ∗ Z(n).

Observe that, in general, hY will differ from the
individual Wiener filter to estimate X given Y ,
and similarly for hZ . The Fourier transform of
the Wiener filter is given by

(HY HZ)(ejω) = S
X(Y

Z )(e
jω) S(Y

Z )(e
jω)−1, (13)

where S denotes a power spectral density matrix.
For example, let NY , NZ be zero-mean wide-
sense stationary random processes, representing
additive noise, uncorrelated with each other and

with X, with a common power spectral density
matrix SN . Let Y = X + NY and Z = X + NZ

be noisy versions of X. Then, as an easy conse-
quence of (13), we conclude

HY (ejω) = HZ(ejω) =

=
SX(ejω)

2SX(ejω) + SN (ejω)
. (14)

The factor 2 multiplying SX in the denomina-
tor reflects the fact that 2 signals are using for
denoising. Suppose now that X, Y and Z are in-
stead blocks (of equal length) of consecutive sam-
ples of random processes. Recall that a block
drawn from the convolution of a sequence with
a filter can be represented as a product of a
Toeplitz matrix h, with entries given by the im-
pulse response of the filter, and a block x drawn
from the input sequence. If the filter has finite
energy, the Toeplitz matrix h is asymptotically
circulant as the block length increases, so that
it is asymptotically diagonalized by the Discrete
Fourier Transform (DFT) matrix [59,60], denoted
by U , as h = UHUT. The matrix multiplication
y = hx, analogous to a convolution, is equiva-
lent to UTy = HUTx, analogous to a spectral
multiplication for each frequency, since H is di-
agonal. This suggests the following structure for

TU
Z

U
ZX

( )Zx z

ZXZ
1

n

Fig. 12. Structure of the estimator x̄Z(z) inspired by linear
shift-invariant filtering. A similar structure may be used
for x̄Y (y).

the estimator used in the WZ transform coder,
represented in Fig. 12: x̄(y, z) = x̄Y (y) + x̄Z(z),
where x̄Z(z) = UHZUTz, for some diagonal ma-
trix HZ , and similarly for x̄Y (y). The (diagonal)
entries of HY and HZ can be set according to the
best linear estimate of X ′

i given
(

Y ′
i

Z′
i

)
. For the

previous example, in which Y and Z are noisy
observations of X,
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Fig. 11. Variations of the fundamental structure of a WZ transform coder of a noisy source.

(HY ii HZ ii) = Σ
X′

i

�
Y ′

i

Z′
i

�Σ−1�
Y ′

i

Z′
i

� ⇒

⇒ HY ii = HZ ii =
σ2

X′
i

2σ2
X′

i
+ σ2

N ′
i

,

where σ2
X′

i
= uT

i ΣXui is the variance of the ith

transform coefficient of X, and ui the correspond-
ing (column) analysis vector of U , and similarly
for σ2

N ′
i
. Alternatively, HY ii and HZ ii can be ap-

proximated by sampling the Wiener filter for the
underlying processes (14) at the appropriate fre-
quencies. Furthermore, if the Wiener filter com-
ponent hZ associated with x̄Z(z) is even, as in
the previous example, then the convolution ma-
trix is not only Toeplitz but also symmetric, and
the DCT can be used instead of the DFT as the
transform U [58](d). An efficient method for gen-
eral DCT-domain filtering is presented in [61].

If the transform-domain estimator is of the
form x̄′

Z(z′) = HZz′, for some diagonal ma-
trix HZ , as in the structure suggested above, or
more generally, if x̄′

Z(z′) operates individually on
each transformed coefficient z′i, then the equiva-
lent structure in Fig. 11(c) can be further sim-
plified to group each subband scalar estimation
x̄′

Z′ i(z
′
i) and each scalar quantizer q′i(z

′
i) as a sin-

gle quantizer. The resulting structure transforms
the noisy observation and then uses a scalar WZ
quantizer of a noisy source for each subband.
This is in general different from the fundamen-
tal structure in Figs. 10 or 11(a), in which an

(d)If a real Toeplitz matrix is not symmetric, there is no
guarantee that the DCT will asymptotically diagonalize
it, and the DFT may produce complex eigenvalues.

estimator was applied to the noisy observation,
the estimation was transformed, and each trans-
formed coefficient was quantized with a WZ quan-
tizer for a clean source. Since this modified struc-
ture is more constrained than the general struc-
ture, its performance may be degraded. However,
the design of the noisy WZ scalar quantizers at
each subband, for instance using the extension of
the Lloyd algorithm in [8], may be simpler than
the implementation of a nonlinear vector estima-
tor x̄Z(z), or a noisy WZ vector quantizer oper-
ating directly on the noisy observation vector.

6. Transformation of the Side Information

6.1. Linear Transformations

Suppose that the side information is a random
vector of finite dimension k. A very convenient
simplification in the setting of Figs. 9 and 10
would consist of using scalars, obtained by some
transformation of the side information vector, in
each of the Slepian-Wolf coders and in the recon-
struction functions. This is represented in Fig. 13.
Even more conveniently, we are interested in lin-
ear transforms Y ′ = V T Y that lead to a small
loss in terms of rate and distortion. It is not
required for V to define an injective transform,
since no inversion is needed.

Proposition 15. Let X be a random scalar with
mean μX , and let Y be a k-dimensional random
vector with mean μY . Suppose that X and Y are
jointly Gaussian. Let c ∈ R

k, which gives the
linear estimate X̂ = cT Y . Then,

min
c

h(X| X̂) = h(X|Y ),
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Fig. 13. WZ transform coding of a noisy source with transformed side information.

and the minimum is achieved for c such that X̂ is
the best linear estimate of X −μX given Y −μY ,
in the MSE sense.

Proof: Set c∗ = ΣXY Σ−1
Y , so that c∗TY is the

best linear estimate of X−μX given Y −μY . (The
assumption that Y is Gaussian implies, by defi-
nition, the invertibility of ΣY , and therefore the
existence of a unique estimate.) For each y, X| y
is a Gaussian random scalar with variance σ2

X|Y ,
constant with y, equal to the MSE of the best
affine estimate of X given Y . Since additive con-
stants preserve variances, the MSE is equal to the
variance of the error of the best linear estimate of
X−μX given Y −μY , also equal to Var[X−c∗TY ].
On the other hand, for each c, X| x̂ is a Gaussian
random scalar with variance σ2

X|X̂ equal to the
variance of the error of the best linear estimate of
X−μX given X̂−μX̂ , denoted by Var[X−α∗cTY ].
Minimizing

h(X| X̂) = 1
2 log2(2πe σ2

X|X̂)

is equivalent to minimizing σ2
X|X̂ . Since

σ2
X|X̂ = Var[X−α∗cTY ] � Var[X−c∗TY ] = σ2

X|Y ,

the minimum is achieved, in particular, for c = c∗

and α∗ = 1 (and in general for any scaled c∗). �

The following theorems on transformation of
the side information are given for the more gen-
eral, noisy case, but are immediately applicable
to the clean case by setting Z = X = X̄ = X̄Z .

Theorem 16 (Linear transformation of side infor-
mation). Under the hypotheses of Corollary 13,
for high rates, the transformation of the side in-
formation given by

V T = UT ΣX̄ZY Σ−1
Y (15)

minimizes the total rate R, with no performance
loss in distortion or rate with respect to the trans-
form coding setting of Fig. 10 (and in particu-
lar Fig. 9), in which the entire vector Y is used
for decoding and reconstruction. Precisely, recon-
struction functions defined by E[X̄ ′

Zi| q, y] and by
E[X̄ ′

Zi| q, y′
i] give approximately the same distor-

tion D̄i, and Ri = H(X̄ ′
Zi|Y ′

i ) � H(X̄ ′
Zi|Y ).

Proof: Theorems 6 and 12 imply

Ri = H(X̄ ′
Zi|Y ) � h(X̄ ′

Zi|Y ) − log2 Δ,

thus the minimization of Ri is approximately
equivalent to the minimization of h(X̄ ′

Zi|Y ).
Since linear transforms preserve Gaussianity, X̄ ′

Z

and Y are jointly Gaussian, and Proposition 15
applies to each X̄ ′

Zi. V is determined by the best
linear estimate of X̄ ′

Z given Y , once the means
have been removed. This proves that there is no
loss in rate. Corollary 2 implies that a subopti-
mal reconstruction is asymptotically as efficient,
thus there is no loss in distortion either. �

Observe that ΣX̄ZY Σ−1
Y in (15) corresponds

to the best linear estimate of X̄Z from Y , dis-
regarding their means. This estimate is trans-
formed according to the same transform applied
to X, yielding an estimate of X̄ ′

Z . In addi-
tion, joint Gaussianity implies the existence of
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a matrix B such that X̄Z = BZ. Consequently,
ΣX̄ZY = BΣZY .

6.2. General Transformations

Theorem 16 shows that under the hypotheses
of high-rate approximation, for jointly Gaussian
statistics, the side information could be lin-
early transformed and a scalar estimate used for
Slepian-Wolf decoding and reconstruction in each
subband, instead of the entire vector Y , with no
asymptotic loss in performance. Here we extend
this result to general statistics, connecting WZ
coding and statistical inference.

Let X and Θ be random variables, represent-
ing, respectively, an observation and some data
we wish to estimate. A statistic for Θ from X is
a random variable T such that Θ ↔ X ↔ T , for
instance, any function of X. A statistic is suffi-
cient if and only if Θ ↔ T ↔ X.

Proposition 17. A statistic T for a continuous
random variable Θ from an observation X satis-
fies h(Θ|T ) � h(Θ|X), with equality if and only
if T is sufficient.

Proof: Use the data processing inequality to write
I(Θ;T ) � I(Θ;X), with equality if and only if T
is sufficient [62], and express the mutual informa-
tion as a difference of entropies. �

Theorem 18 (Reduction of side information). Un-
der the hypotheses of Theorem 12 (or Corollar-
ies 13 or 14), a sufficient statistic Y ′

i for X̄ ′
Zi

from Y can be used instead of Y for Slepian-Wolf
decoding and reconstruction, for each subband i in
the WZ transform coding setting of Fig. 10, with
no asymptotic loss in performance.

Proof: Theorems 6 and 12 imply Ri =
H(X̄ ′

Zi|Y ) � h(X̄ ′
Zi|Y ) − log2 Δ. Proposition 17

ensures that h(X̄ ′
Zi|Y ) = h(X̄ ′

Zi|Y ′
i ), and Corol-

lary 7 that a suboptimal reconstruction is asymp-
totically as efficient if Y ′

i is used instead of Y . �

In view of these results, Theorem 16 inciden-
tally shows that in the Gaussian case, the best
linear MSE estimate is a sufficient statistic, which
can also be proven directly (for instance com-
bining Propositions 15 and 17). The obtention

of (minimal) sufficient statistics has been stud-
ied in the field of statistical inference, and the
Lehmann-Scheffé method is particularly useful
(e.g. [63]).

Many of the ideas on the structure of the es-
timator x̄(y, z) presented in Section 5.2 can be
applied to the transformation of the side informa-
tion y′(y). For instance, it could be carried out in
the domain of the data transform U . If, in addi-
tion, x̄Y (y) is also implemented in the transform
domain, for example in the form of Fig. 12, then,
in view of Fig. 13, a single transformation can be
shared as the first step of both y′(y) and x̄Y (y).
Furthermore, the summation x̄Y (Y )+ ˆ̄XZ can be
carried out in the transform domain, since ˆ̄X ′

Z is
available, eliminating the need to undo the trans-
form as the last step of x̄Y (y).

Finally, suppose that the linear transform
in (15) is used, and that U (asymptotically) di-
agonalizes both ΣX̄ZY and ΣY . Then, since U is
orthonormal, it is easy to see that y′(y) = V Ty =
ΛX̄ZY Λ−1

Y UTy, where Λ denotes the correspond-
ing diagonal matrices and UTy is the transformed
side information. Of course, the scalar multipli-
cations for each subband may be suppressed by
designing the Slepian-Wolf coders and the recon-
struction functions accordingly, and, if x̄Y (y) is of
the form of Fig. 12, the additions in the transform
domain can be incorporated into the reconstruc-
tion functions.

7. Experimental Results

7.1. Transform WZ Coding of Clean Video

In [11], we apply WZ coding to build a
low-complexity, asymmetric video compression
scheme where individual frames are encoded in-
dependently (intraframe encoding) but decoded
conditionally (interframe decoding). In the pro-
posed scheme we encode the pixel values of a
frame independently from other frames. At the
decoder, previously reconstructed frames are used
as side information and WZ decoding is per-
formed by exploiting the temporal similarities be-
tween the current frame and the side information.

In the following experiments, we extend the
WZ video codec, outlined in [11], to a trans-
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form domain WZ coder. The spatial transform
enables the codec to exploit the statistical de-
pendencies within a frame, thus achieving better
rate-distortion performance.

For the simulations, the odd frames are desig-
nated as key frames which are encoded and de-
coded using a conventional intraframe codec. The
even frames are WZ frames which are intraframe
encoded but interframe decoded, adopting the
WZ transform coding set-up for clean sources and
transformed side information, described in Sec-
tions 4 and 6.

For encoding a WZ frame X, we first apply a
blockwise DCT to generate X ′. Each transform
coefficient subband is then independently quan-
tized using uniform scalar quantizers with simi-
lar step sizes across bands. Since we use fixed
length codes for Slepian-Wolf coding it is not pos-
sible to have exactly the same step sizes. Rate-
compatible punctured turbo codes are used for
Slepian-Wolf coding in each subband. The parity
bits produced by the turbo encoder are stored in
a buffer which transmits a subset of these parity
bits to the decoder upon request.

At the decoder, we take previously recon-
structed frames to generate side information Y ,
which is used in decoding X. In the first
set-up (MC-I), we perform motion-compensated
interpolation on the previous and next recon-
structed key frames to generate Y . In the second
scheme (MC-E), we produce Y through motion-
compensated extrapolation using the two previ-
ous reconstructed frames: a key frame and a WZ
frame. The DCT is applied to Y , generating the
different side information coefficient bands Y ′

i . A
bank of turbo decoders reconstruct the quantized
coefficient bands independently using the corre-
sponding Y ′

i as side information. Each coefficient
subband is then reconstructed as the best esti-
mate given the previously reconstructed symbols
and the side information. More details of the pro-
posed scheme and extended results can be found
in [64].

The compression results for the first 100 frames
of Mother & Daughter are shown in Fig. 14. MSE
has been used as a distortion measure, expressed
as Peak Signal-To-Noise Ratio (PSNR) in dB, de-
fined as 10 log10(2552/MSE). For the plots, we

only include the rate and distortion of the lumi-
nance of the even frames. The even frame rate is
15 frames per second. We compare our results to:

1. DCT-based intraframe coding: the even
frames are encoded as Intracoded (I)
frames.

2. H.263+ interframe coding with an I-B-I-B
predictive structure, counting only the rate
and distortion of the Bidirectionally pre-
dicted (B) frames.

We also plot the compression results of the pixel-
domain WZ codec.
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Fig. 14. Rate and PSNR comparison of WZ codec vs.
DCT-based intraframe coding and H.263+ I-B-I-B coding.
Mother & Daughter sequence.

As observed from the plots, when the side in-
formation is highly reliable, such as when MC-I is
used, the transform-domain codec is only 0.5 dB
better than the pixel-domain WZ codec. With
the less reliable MC-E, using a transform before
encoding results in a 2 to 2.5 dB improvement.
Compared to conventional DCT-based intraframe
coding, the WZ transform codec is about 10 to
12 dB (with MC-I) and 7 to 9 dB (with MC-E)
better. The gap from H.263+ interframe coding
is 2 dB for MC-I and about 5 dB for MC-E. The
proposed system allows low-complexity encoding
while approaching to the compression efficiency
of interframe video coders.
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7.2. WZ Transform Coding of Noisy Images

We implement various cases of WZ transform
coding of noisy images to confirm the theoretic
results of Sections 3, 5 and 6. The source data X
consists of all 8 × 8 blocks of the first 25 frames
of the Foreman Quarter Common Intermediate
Format (QCIF) video sequence, with the mean
removed. Assume that the encoder does not
know X, but has access to Z = X + V , where V
is a block of white Gaussian noise of variance σ2

V .
The decoder has side information Y = X + W ,
where W is white Gaussian noise of variance σ2

W .
V and W are independent of each other and of X.
In this case, E[X| y, z] is not additively separable.
However, since our theoretic results apply to sep-
arable estimates, the estimators are constrained
to be linear, and therefore we define

x̄(y, z) = Σ
X(Y

Z ) Σ−1

(Y
Z )

( y
z ) = x̄Y (y) + x̄Z(z).

We consider the following cases, all using esti-
mators and WZ 2D-DCT coders of clean sources:

1. Assume that Y is made available to the en-
coder estimator, perform conditional linear
estimation of X followed by WZ transform
coding of the estimate.

2. Noisy WZ transform coding of Z as shown
in Fig. 10.

3. Perform WZ transform coding directly
on Z, reconstruct Ẑ at the decoder and ob-
tain X̂ = x̄(Y, Ẑ).

4. Noisy WZ transform coding of Z as in
Case 2, except that ˆ̄x′

Zi(q
′
i, y

′
i) = E[X̄ ′

i| q′i],
i.e., the reconstruction function does not
use the side information Y .

Fig. 15 plots rate vs. PSNR for the above cases,
with σ2

V = σ2
W = 25, and σ2

X = 2730 (mea-
sured). The performance of conditional estima-
tion (Case 1) and WZ transform coding (Case 2)
are in close agreement at high rates as predicted
by Theorem 12. Our theory does not explain the
behavior at low rates. Experimentally, we ob-
served that Case 2 slightly outperforms Case 1
at lower rates. Both cases show better rate-
distortion performance than direct WZ coding
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Fig. 15. WZ transform coding of a noisy image is as-
ymptotically equivalent to the conditional case. Foreman
sequence.

of Z (Case 3). Neglecting the side-information
in the reconstruction function (Case 4) is ineffi-
cient at low rates, but at high rates, this sim-
pler scheme approaches the performance of Case 2
with the ideal reconstruction function, thus con-
firming Corollary 7.

8. Conclusions

If ideal Slepian-Wolf coders are used, uniform
tessellating quantizers without index repetition
are asymptotically optimal at high rates. It is
known [5] that the rate loss in the WZ problem
for smooth continuous sources and quadratic dis-
tortion vanishes as D → 0. Our work shows that
this is true also for the operational rate loss and
for each finite dimension n.

The theoretic study of transforms shows that
(under certain conditions) the KLT of the source
vector is determined by its expected conditional
covariance given the side information, which is
approximated by the DCT for conditionally sta-
tionary processes. Experimental results confirm
that the use of the DCT may lead to important
performance improvements.

If the conditional expectation of the unseen
source data X given the side information Y and
the noisy observation Z is additively separable,
then, at high rates, optimal WZ quantizers of Z
can be decomposed into estimators and uniform
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tessellating quantizers for clean sources, achieving
the same rate-distortion performance as if the side
information were available at the encoder. This
is consistent with the experimental results of the
application of the Lloyd algorithm for noisy WZ
quantization design in [49].

The additive separability condition for high-
rate WZ quantization of noisy sources, albeit less
restrictive, is similar to the condition required
for zero rate loss in the quadratic Gaussian noisy
Wyner-Ziv problem [8], which applies exactly for
any rate but requires arbitrarily large dimension.

We propose a WZ transform coder of noisy
sources consisting of an estimator and a WZ
transform coder for clean sources. Under certain
conditions, in particular if the encoder estimate
is conditionally covariance stationary given Y ,
the DCT is an asymptotically optimal transform.
The side information for the Slepian-Wolf decoder
and the reconstruction function in each subband
can be replaced by a sufficient statistic with no
asymptotic loss in performance.
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