
SCIBORG: Secure Configurations for the IoT Based
on Optimization and Reasoning on Graphs

Hamed Soroush∗, Massimiliano Albanese†, Milad Asgari Mehrabadi‡, Ibifubara Iganibo†, Marc Mosko§,
Jason H. Gao¶, David J. Fritz¶ Shantanu Rane§, Eric Bier§,
∗Zoox, Foster City, CA 94404, USA, Email: hsoroush@zoox.com

†George Mason University, Fairfax, VA 22030, USA, Email: {malbanes,iiganibo}@gmu.edu
‡University of California, Irvine, Irvine, CA 92697, USA, Email: masgarim@uci.edu

§Palo Alto Research Center, Palo Alto, CA 94304, USA, Email: {hsoroush,mmosko,srane,bier}@parc.com
¶Sandia National Laboratories, Livermore, CA 94550, USA, Email: {jhgao,djfritz}@sandia.gov

Abstract—Addressing security misconfiguration in complex dis-
tributed systems, such as networked Industrial Control Systems
(ICS) and Internet of Things (IoT) is challenging. Owners and
operators must go beyond tuning parameters of individual com-
ponents and consider the security implications of configuration
changes on entire systems. Given the growing scale of cyber
systems, this task must be highly automated. Unfortunately, prior
work on configuration errors has largely ignored the security
impact of configurations of connected components. To address
this gap, we present SCIBORG, a framework that improves the
security posture of distributed systems by examining the impact
of configuration changes across interdependent components using
a graph-based model of the system and its vulnerabilities. It
formulates a Constraint Satisfaction Problem from the graph-
based model and uses an SMT solver to find optimal config-
uration parameter values that minimize the impact of attacks
while preserving system functionality. SCIBORG also provides
supporting evidence for the proposed configuration changes. We
evaluate SCIBORG on an IoT testbed.

I. INTRODUCTION

As cyber systems become more complex and connected, con-
figuration analytics becomes increasingly critical for their cor-
rect and secure operation. Attackers usually rely on unpatched
vulnerabilities and configuration errors to gain unauthorized
access to system resources. Misconfiguration can occur at any
level of a system’s software architecture, and correctly configur-
ing systems becomes more complex when many interconnected
systems are involved. In 2017, Security Misconfiguration was
listed by OWASP amongst the ten most critical web application
security risks [1]. Current configuration security approaches
focus on tuning the configuration of individual components,
but lack a principled approach to managing the complex rela-
tionships between the configuration parameters of a composed
system’s components.

In this paper, we first corroborate the significance of se-
curity misconfiguration vulnerabilities by analyzing data from

This work was funded by the US Department of Defense under the DARPA
ConSec program. Any opinions expressed herein are those of the authors and
do not necessarily reflect the views of the U.S. Department of Defensed or
any other agency of the U.S. Government. Hamed Soroush and Milad Asgari
Mehrabadi worked on this project while affiliated with PARC as a senior
researcher and a research intern respectively. Approved for release by Sandia
National Laboratories: SAND2020-1750 C.

the National Vulnerability Database (NVD) and Shodan. We
then present the design, implementation, and evaluation of
SCIBORG, a system that addresses the mentioned limitations.

Our key contributions can be summarized as follows. First,
we model a composed system as a multi-layer graph compris-
ing a dependency sub-graph capturing functional relationships
among system components, a configuration subgraph modeling
relationships among configuration parameters within and across
components, and an attack subgraph modeling vulnerabilities
and their use in multi-step attacks. Second, we analyze the
potential impact of multi-step attacks enabled by configura-
tion settings. Prior work on minimizing a system’s attack
surface does not capture the intricate relationships between
configuration parameters, attack paths available to an adversary,
and functional dependencies among system components. Thus,
it generally fails to reduce the risk associated with residual
vulnerabilities. Third, we develop algorithms and software tools
to jointly analyze the subgraphs of the multi-layer graph and
reason about the impact of a candidate configuration set on
the security and functionality of the composed system. We use
a Satisfiability Modulo Theory (SMT) solver to express the
complex relationships among the configuration parameters as
constraints in a security optimization problem.

We designed SCIBORG as a scalable pipeline that (i) in-
gests system requirements, configuration files, software doc-
umentation and various types of configuration vulnerabilities,
(ii) builds a queryable, graph-based representation of the re-
lationships between vulnerabilities, configuration parameters,
and system components, (iii) provides an API to perform a
quantitative analysis of the security impact of configuration
settings, (iv) automatically formulates a constraint satisfaction
problem based on the model and uses Z3 SMT solver to find
optimal parameter values, and (v) provides human-readable
evidence about the optimality of the selected configuration.

The the paper is organized as follows. Section II describes a
study of configuration vulnerabilities that motivates our work.
Section III presents the SCIBORG model in detail, and Sec-
tion VI reports evaluation results. Finally, Section VII discusses
related work and Section VIII gives concluding remarks and
identifies future research directions.



TABLE I: Software Configuration Vulnerability Categories

CWE ID Name NVD Short Description
CWE-16 Configuration Weaknesses in this category are typically introduced during the configuration of the software.
CWE-255 Credential Management Weaknesses in this category are related to the management of credentials.
CWE-264 Permissions, Privileges, and Access Controls Weaknesses in this category are related to the management of permissions, privileges, and

other security features that are used to perform access control.
CWE-275 Permission Issues Weaknesses in this category are related to improper assignment or handling of permissions.
CWE-284 Improper Access Control The software does not restrict or incorrectly restricts access to a resource from an unauthorized

actor.
CWE-285 Improper Authorization The software does not perform or incorrectly performs an authorization check when an actor

attempts to access a resource or perform an action.
CWE-552 Files/Folders Accessible to External Parties Files or directories are accessible in the environment that should not be.
CWE-665 Improper Initialization The software does not initialize or incorrectly initializes a resource, which might leave the

resource in an unexpected state when it is accessed or used.
CWE-769 Uncontrolled File Descriptor Consumption The software can be influenced by an attacker to open more files than are supported by the

system.

II. MOTIVATION

A significant fraction of the downtime of critical infrastruc-
ture has been attributed to misconfigurations. Configuration-
related vulnerabilities can cause adverse outcomes that impact
security and functionality, including data breaches, denial of
service, system downtime, and inefficient operation. Despite
this fact, many configuration-related vulnerabilities are not
reported to vulnerability databases because they are considered
user errors rather than software issues. Consequently, estimat-
ing the prevalence and significance of such vulnerabilities is
challenging. Nevertheless, one can get lower bounds on these
metrics by analyzing those vulnerabilities that get reported and
by using services such as Shodan that index information about
the configuration of Internet-connected devices. Below, we
present a longitudinal analysis of configuration vulnerabilities
reported to NVD as well as an analysis of devices on Shodan
that suffer from security-related vulnerabilities.

A. Dataset I: Configuration-Related Vulnerabilities in NVD

We gathered Common Vulnerability and Exposure (CVE)
entries from NVD reported between 2010 and 2018. A typical
NVD entry has one or more Common Weakness Enumeration
Specification (CWE) labels indicating the type of vulnerabil-
ity. We identified several such categories, listed in Table I,
as configuration-related vulnerabilities. After removing entries
with no CWE label, our Dataset I contains 67,742 vulnera-
bilities. Fig. 1 shows the evolution of the number of reported
vulnerabilities over the analysis period along with the fraction
of configuration-related CVEs, and Fig. 2 shows the evolution
of the impact score derived from the Common Vulnerability
Scoring System (CVSS) version 3.0 for configuration and non-
configuration vulnerabilities over the same period. Configu-
ration vulnerabilities have generally higher impact than non-
configuration ones. The impact score of recent configuration
vulnerabilities has lower variance, indicating higher confidence
in their impact.

Fig. 3 shows the complementary CDF of different scores
for configuration and non-configuration vulnerabilities, for both
CVSS 2.0 and CVSS 3.0, namely impact, exploitability, and
severity, which is a combination of the impact and exploitability

2010 2011 2012 2013 2014 2015 2016 2017 2018
Time

0
2000
4000
6000
8000

10000
12000
14000

No
. o

f V
ul

n 
Re

po
rts

0.10 0.12 0.16 0.16

0.12 0.14
0.19

0.18
0.15Non-config

Config

Fig. 1: Number of configuration versus non-configuration vul-
nerability reports.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Time

3.0

3.5

4.0

4.5

5.0

5.5

6.0

CV
SS

3_
im

pa
ct

Sc
or

e

Non-config
Config

Fig. 2: CVSS 3.0 impact score for configuration and non-
configuration vulnerabilities.

scores. As Fig. 3(a) shows, config-related vulnerabilities have
higher impact than non-config-related vulnerabilities for both
CVSS 2.0 and CVSS 3.0 Instead, the exploitability score of
config-related vulnerabilities is lower, as shown in Fig. 3(b).
However, as shown in Fig. 3(c), the higher impact of config-
related vulnerabilities dominates over their exploitability, re-
sulting in a slightly higher severity score.



0 2 4 6 8 10
cvss_impact

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

CVSS2 Non-config
CVSS2 Config
CVSS3 Non-config
CVSS3 Config

(a)

0 2 4 6 8 10
cvss_exploitability

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

CVSS2 Non-config
CVSS2 Config
CVSS3 Non-config
CVSS3 Config

(b)

0 2 4 6 8 10
cvss_severity

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

CVSS2 Non-config
CVSS2 Config
CVSS3 Non-config
CVSS3 Config

(c)

Fig. 3: Complementary cumulative distribution function (CCDF) of configuration versus non-configuration (a) impact score, (b)
exploitability score, and (c) severity score of CVE entries in NVD dataset from 2010 to 2018 for CVSS versions 2.0 and 3.0.

0 100 200 300 400 500
Lingering Time for Shodan IoT Vulns

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

Non-config
Config

(a)

0 100 200 300 400 500
Lingering Time for Shodan ICS Vulns

0.0

0.2

0.4

0.6

0.8

1.0

CC
DF

Non-config
Config

(b)

Fig. 4: Lingering time of configuration and non-configuration vulnerabilities in (a) IoT devices and (b) ICS devices, as reported
by Shodan.

B. Dataset II: Config-Related Vulnerabilities in Shodan

Shodan is a popular search engine for Internet facing IoT
devices and services. It uses custom crawlers to regularly scan
the Internet and gather information about hosts. Shodan makes
this information available through a graphical user interface and
an API. We created our Dataset II by pulling all data up to
August 2019 from Shodan, focusing our analysis on devices in
the United States. For each such device, we acquired detailed
information, including vulnerabilities. Consistently with the
analysis of Section II-A, we focused on NVD-based vulner-
abilities, identified the type of each vulnerability by looking
up its CWE labels, and labeled configuration related and non-
configuration related vulnerabilities according to Table I.

Fig. 4 shows an analysis of the lingering time (in days) of
vulnerabilities in IoT and ICS systems. Configuration vulner-
abilities last longer in both systems. While only 18% of non-
configuration vulnerabilities for IoT systems linger for more
than 300 days (out of the 16-month period of available data),
about 28% of config-related vulnerabilities last more than 300
days. The percentages are higher for ICS systems: 30% and
40% for non-configuration and configuration vulnerabilities,
respectively. These results indicate that configuration vulnera-
bilities linger for an unacceptable amount of time, emphasizing
the need for solutions that discover and remediate them.

Internet

Web Server (hA)

Mobile App Server (hC)

Catalog Server (hE)

Order Processing Server (hF)

DB Server (hG)

Local DB Server (hD)

Local DB Server (hB)

Fig. 5: Network diagram of a notional e-commerce system.

III. MULTI-LAYER GRAPH MODEL

SCIBORG’s approach is based on modeling the distributed
system (or composed system) as a three-layer directed graph
efficiently encoding the information needed to reason upon
the optimality of system configurations. The three layers are
(i) a dependency subgraph; (ii) a configuration subgraph; and
(iii) a vulnerability subgraph. Directed edges between the three
subgraphs define the functional composition and the attack
surface for a configuration set. For illustrative purposes, a three-
layer graph corresponding to the notional distributed system of



h
A
,f

s

8

h
E
, f

s

7

h
C
, f

s

7

h
F
, f

s

7

h
G
, f

s

8

h
D
, f

d

5
h

B
, f

d

5

h
S
, f

s

10
h

T
, f

s

7

h
I
, f

s

8
v

D 
Ú v

E 
Ú v

F

v
B
Ú v

C

0.70.3

0.8

0.2

1

1

1
1

v
A

v
E

v
C

v
F

v
G

v
D

v
B

Dependency

Subgraph

Attack

Subgraph

Configuration Subgraph

enable_debug_mode

mysql.allow_persistent

mysql.max_links

mysql.max_persistent

/proc/sys/fs/file-max

max_connections

/proc/sys/fs/file-max > max_connections

< max_connectionsmysql.max_links

>mysql.max_links mysql.max_persistent

ttenable_debug_mode = TRUE

ttmysql.allow_persistent = TRUE

enable_debug_mode

ttenable_debug_mode = TRUE

0.8

1

0.7

1

0.8

0.7

0.7

Fig. 6: A graph corresponding to the system of Fig. 5.

Fig. 5 is depicted in Fig. 6. The SCIBORG implementation and
evaluation of an actual IoT system is discussed in Section VI.

A. Dependency Subgraph

Configuration changes in one component can have a dramatic
impact on the security and functionality of other components.
Globally optimal security decisions – e.g., deciding which vul-
nerabilities to make unreachable through configuration changes
– need dependency information. While finding all dependencies
is a difficult problem beyond the scope of SCIBORG, we derive
a useful set of dependencies by analyzing standard operating
procedures or using approaches such as [5], [11]. A node
in the dependency subgraph represents a system component,
and a directed edge represents a dependency between two
components. Depending on the level of granularity of the
model, a component may be a host or an individual service
running on a host. When dependencies are captured at the
lowest possible level of granularity – with macro-components
broken down into sub-components – the dependency graph is
expected to be acyclic. Literature on call graphs shows how we
can identify dependencies at the level of individual procedure
and function calls and construct acyclic graphs modeling such
dependencies [12].

To capture a wide range of relationships between compo-
nents, we model each dependency as a function of the form
f : [0, 1]n → [0, 1], with f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.
Each component has a value (or utility) for the organization and
its dependency function defines its ability to deliver its expected
value, based on the status of the components it depends on: the
arguments of this function are the percentage residual values
of such components and are in turn computed through each
component’s respective dependency function. A dependency
function returns 1 when the component can deliver 100% of

its value, and 0 when it has been completely compromised. We
identify three categories of dependency relationships, namely
(i) redundancy (fr), wherein a component depends on a redun-
dant pool of resources; (ii) strict dependence (fs), wherein a
component strictly depends on a pool of other components,
such that, if one fails, the dependent component no longer
delivers value; and (iii) graceful degradation (fd), wherein a
component depends on a pool of other components such that,
if one fails, the system continues to work with degraded perfor-
mance. Such classification is not intended to be exhaustive, and
other dependency relationships can be introduced by defining
the corresponding dependency functions, as shown below for
the three categories listed above.

fr(l1, . . . , ln) =

{
1, if ∃i ∈ [1, n] s.t. li = 1

0, otherwise

fd(l1, . . . , ln) =
1

n

n∑
i=1

li

fs(l1, . . . , ln) =

{
1, if ∀i ∈ [1, n], li=1

0, otherwise

Fig. 6 shows the dependency subgraph for our notional
system. An edge from hA to hB denotes that hA depends
on hB . Each component node is labeled with the type of
dependency and its value. Such values can be assigned by a
domain expert or automatically derived by computing graph-
theoretic centrality metrics [8], which indicate how important
(or central) each node is for the operation of a system or
mission. In the security field, ad-hoc centrality measures have
been used for botnet detection and mitigation [16].

B. Configuration Subgraph

The configuration subgraph models relationships between
configuration parameters, both within a component and across
different components of the composed system. There are two
classes of vertices in this subgraph, namely, Class 1 vertices,
which represent per-component configuration parameters, and
Class 2 vertices, which capture constraints on one or more
configuration parameters. Edges from Class 1 vertices to a
Class 2 vertex identify the parameters involved in a constraint.
Some of these constraints are specified in the component’s
or composed system’s documentation. More importantly, some
of the relationships between configuration parameters might
enable or disable preconditions for vulnerabilities in one or
more components. SCIBORG captures this information with
directed edges from Class 2 vertices of the configuration
subgraph to relevant nodes in the vulnerability subgraph. The
constraints associated with a given system configuration induce
a specific vulnerability subgraph for the composed system.
For instance, in Fig. 5, the constraint enable_debug_mode
= TRUE, which must be satisfied when the system is in debug
mode, creates the preconditions to exploit vulnerability va.

The degree to which configuration parameter dependencies,
within and across components, can be captured depends on



the complexity of the components themselves and the com-
pleteness of their documentation, including the set of standard
operating procedures adopted by an organization. Additionally,
SCIBORG extracts configuration information – in a variety
of formats, including XML and JSON – from specification
documents for commercial off-the-shelf (COTS) components.

C. Vulnerability Subgraph

Vulnerability subgraphs, also known as attack graphs, are
powerful conceptual tools to represent knowledge about vul-
nerabilities and their dependencies. To assess the impact of
configuration changes on a system’s attack surface, we employ
vulnerability subgraphs as formalized in [2], which in turn
relies on the compact representation of attack graphs that was
proposed in [4]. Such representation keeps one vertex for each
exploit or security condition, leading to an acyclic attack graph
of polynomial size in the total number of vulnerabilities and
security conditions. A vulnerability subgraph for our notional
system is depicted in Fig. 6: vertices represent known vulner-
abilities, and an edge from vulnerability vA to vulnerability
vB indicates that exploiting vA creates the preconditions for
exploiting vB . These subgraphs can be generated by combining
information from network scanners (e.g., Nessus) and vulner-
ability databases (e.g., CVE, NVD), as shown in [4], [7], [14].
For each system component, SCIBORG ingests vulnerability
information from NVD.

SCIBORG’s approach differs from the traditional idea of
minimizing the attack surface by minimizing, for instance, the
number of exploitable resources available to the adversary.
Instead, we analyze the paths that an adversary can traverse in a
multi-step attack that seeks to achieve a well-defined goal (e.g.,
compromising a series of devices that lead up to a database and
then exfiltrating sensitive information from that database), and
evaluate the impact resulting from such attacks. The edges in
the vulnerability subgraph of Fig. 6 are labeled with probability
values, which can be used to infer the most likely paths that
an attacker might take in a multi-step attack. Determining the
probability values is an open research problem, though useful
heuristics exist [2], [3]. For instance, the likelihood that an
attacker will exploit a given vulnerability can be derived from
(i) the skill level of the attacker relative to the complexity
of the exploit [9]; (ii) the resources and time available to the
adversary; (iii) other metrics defined in CVSS. The rationale is
that vulnerabilities that require more resources, time, and skill
are less likely to be exploited. For example, CVSS defines the
Access Complexity (AC) of a vulnerability as a measure of
the intricacy of the attack required to exploit that vulnerability
once an attacker has gained access to the target system. These
probabilities are used in the computation of the security impact
of a given configuration.

D. Edges across Subgraphs

In addition to edges within subgraphs, our model includes
directed edges across the three subgraphs as described below.
Dependency Subgraph→Configuration Subgraph. A di-
rected edge from a component in the dependency graph to a

Class 1 vertex in the configuration graph represents the list of
configuration parameters associated with that component. There
are no edges between the dependency subgraph and Class 2
vertices in the configuration subgraph.
Configuration Subgraph→Vulnerability Subgraph. A di-
rected edge between a Class 2 node in the configuration
subgraph to a vertex in the vulnerability subgraph implies that
the constraint expressed in the Class 2 vertex represents a
precondition for exploiting that vulnerability.
Vulnerability Subgraph→Dependency Subgraph. An edge
from a vulnerability in the vulnerability subgraph to a compo-
nent in the dependency subgraph represents the exposure factor
of the component to the exploitation of that vulnerability. The
exposure factor, which ranges from 0 to 1, is interpreted as a
percentage. In classical risk analysis terminology, the Single
Loss Expectancy (SLE), the loss due to a single incident,
is defined as the product of the Asset Value (AV ) and the
Exposure Factor (EF ): SLE = AV × EF .

IV. TECHNICAL APPROACH

In this section, we first illustrate how to assess the impact of
multi-step attacks, and then present our graph-based approach
to optimizing configurations using constraint satisfaction.

A. Impact Calculation for Multi-Step Attacks

We can compute the impact on a distributed system of multi-
step attacks that are enabled under a given system configu-
ration. Suppose that an attacker exploits vulnerability vC in
Fig. 6. This makes component hC completely unavailable, as its
exposure factor with respect to vC is 1. As hT strictly depends
on hC , hT also becomes unavailable, leading to a marginal
impact of 7+7= 14. Based on these observations, we define
the impact function for a single attack step as

impact(vj) =
∑
h∈H

(sj−1(h)− sj(h)) · u(h), (1)

where sj−1(h) and sj(h) respectively denote the relative
residual utility of component h before and after exploitation
of vj in an attack path P = (v1, . . . , vn), and u(h) is the
original utility of h. For a given attack step vj , this impact
function adds up the marginal losses for all the components
affected (either directly or indirectly) by the exploitation of vj .
Therefore, the impact of exploiting vj depends on what other
vulnerabilities were exploited in previous attack steps and how
they impacted the system. In fact, in a multi-step attack, the
utility of each component may further decrease after each attack
step. In practice, s(h) can be defined as follows:

si(h) =

{
1, if i = 0

fh (si(h1), . . . , si(hn)), otherwise
(2)

where fh is the dependency function associated with compo-
nent h and h1, . . . , hn are the components that h depends on.

Our graph model provides non-obvious insights about secu-
rity optimization. For instance, after exploiting vC , the attacker
may take one of two steps, exploiting either vD with probability



0.7 or vF with probability 0.3. Intuition suggests that, as the
attacker is more likely to exploit vD, that vulnerability should
be preferentially patched or addressed before vF . However, this
approach turns out to be inefficient, as we now explain. The
additional impact of exploiting vD would be 0.7 · 5 = 3.5,
as hC and hT are already unavailable because of the previous
exploit. In comparison, the additional impact of exploiting vF
would be 0.7 · 7 + 8 + 10 = 22.9, as compromising hF

also makes hA and hS unavailable. This suggests that, even
though the attacker is more likely to exploit vD, the security
benefit of addressing vF is greater. Quantitatively, the impact
of an adversary sequentially exploiting v1, . . . , vn in a path
P = (v1, . . . , vn) in the vulnerability subgraph is:

impact(P ) =

n∑
j=1

∑
h∈H

(sj−1(h)− sj(h)) · u(h) (3)

Our goal is to identify configuration changes that minimize
the system’s attack surface by prioritizing countermeasures and
blocking high-impact attack paths. To achieve this goal, we
define attack surface metrics that consider the likelihood and
potential impact of each attack, rather than simply counting
vulnerable entry points. A simple yet effective metric is:

attack surface(S) =
m∑
i=1

impact(Pi) · Pr(Pi) (4)

where P1, . . . , Pm are known attack paths, and impact(Pi) and
Pr(Pi) are the impact and likelihood of Pi respectively.

This approach can be extended to assess the impact of
multiple concurrent attacks. In the worst case, at each step,
the attacker exploits all vulnerabilities for which preconditions
are satisfied. If 〈v1, . . . , vm〉 is a topological sort of all nodes
in the attack graph, the attack surface metric can be defined as

attack surface(S) =
m∑
j=1

∑
h∈H

(sj−1(h)− sj(h)) · u(h) (5)

In other words, Eq. 5 defines the attack surface as the
potential impact of a multi-step attack in which all attack paths
are pursued concurrently. Although unrealistic in practice, this
scenario provides an upper bound on a system’s susceptibility
to attacks. A more realistic worst-case scenario would consider
the relative complexity of exploiting different vulnerabilities,
providing a trade-off between the two scenarios of Eqs. 4 and 5.
However, intuition suggests that minimizing the attack surface
as defined by Eq. 4 would reduce any other reasonable attack
surface measure.

B. Config Security as a Constraint Satisfaction Problem

SCIBORG aims to find configurations that minimize se-
curity impact while satisfying configuration constraints and
preserving the functionality of the distributed system. These
configurations are computed by solving the following con-
straint satisfaction problem (CSP), where fi denotes the ith

Fig. 7: Overall Architecture of SCIBORG

configuration parameter and F = (f1, f2, · · · , fk) the entire
configuration.

Find configuration F ∗ = (f∗1 , f
∗
2 , . . . , f

∗
k ) such that:

1) Configuration subgraph constraints are satisfied
2) Dependency subgraph constraints are satisfied
3) F ∗ = arg min

F

∑
P∈A(F ) impact(P )

where P = (v1, . . . , vn) is any path in the vulnerability
subgraph A(F ) induced by the configuration F .

SCIBORG obtains F ∗ using a Satisfiability Modulo Theory
(SMT) solver. We will describe later how dependency and
configuration constraints are derived and fed to the solver.
The solver also takes as input the initial system configuration
F , which we assume to correspond to parameter settings that
put the system in a working state, although not optimal with
respect to security or functionality. While solving the CSP, SCI-
BORG can encounter combinations of constraints that cannot
be simultaneously satisfied. Thus, some of the constraints are
carefully relaxed according to a predefined policy that balances
security and functionality. For the example in Fig. 6, the solver
determines that debug mode must be set to false for both hA

and hC .

V. SCIBORG DESIGN AND IMPLEMENTATION

Having described our technical approach, we now discuss
SCIBORG’s implementation, which includes (a) ingesting in-
formation about the configuration, functionality and potential
vulnerabilities of a distributed system; (b) using ingested in-
formation to construct the multi-layer graph model described
in Section IV; (c) reasoning about the security and function-
ality of possible configurations using a theorem prover; and
(d) generating evidence that certain configurations improve
security-functionality tradeoffs, and guidance for deploying
such configurations. Fig. 7 shows SCIBORG’s architecture.

A. Data Ingestion Framework

To construct a graph-based model, SCIBORG ingests the
items listed in Table II from several information sources.
Depending on the type of information, system component, and



TABLE II: Information ingested by SCIBORG.

Data Items Source Used By
Configuration Parameters Meta Data (type, de-
fault value, required?, text description)

Specification sheets on manufacturer websites in machine-
readable data formats including HTML, CSS, JSON, XML,
or in natural language.

Modeling Framework (Configuration Subgraph)

Configuration Parameters Values Configuration Files Modeling Framework (Configuration Subgraph)
Available constraints on configuration parame-
ters to ensure legitimacy of parameter values

Standard operating procedure and/or component documenta-
tion, in machine readable format, natural language, or from
user input

Modeling Framework (Configuration Subgraph)

Available constraints on configuration parame-
ters to ensure a functional system

Standard operating procedure for the distributed system,
provided both in machine readable formats and natural
language.

Modeling Framework (Configuration Subgraph)

Functional dependencies between system com-
ponents

Entity in charge of the design and commissioning of the
system.

Modeling Framework (Dependency Subgraph)

Known vulnerabilities in system components National Vulnerability Database (NVD) bug reports Modeling Framework (Vulnerability Subgraph)
Security best practices and bad practices Domain experts in IoT security and represented in machine

readable data formats or in natural language.
Modeling Framework (Vulnerability Subgraph)

Prioritization of security versus functionality System administrators and operators. Reasoning Framework

manufacturer or vendor, these items are available in different
data formats, including XML, HTML/CSS, JSON, and natu-
ral language. Consequently, data ingestion is semi-automatic,
with customized parsers for some components. For flexibility,
SCIBORG allows advanced users to visually create ingestion
data flows and comes equipped with ingestion mechanisms for
components of interest (e.g., PFSense Firewall). These data
flows are primarily implemented in Apache NiFi.

Ingesting configuration information. SCIBORG’s data flows
extract configuration information, including the names of pa-
rameters, data types, default values, current values if available,
range of possible values, and free-form text descriptions.

Ingesting vulnerability information. SCIBORG distinguishes
three types of vulnerabilities: Type-1, software vulnerabilities
reported in vulnerability databases and identified by vulnera-
bility scanners; Type-2, per-component bad security practices,
currently specified by user input; and Type-3, not-best security
practices per component, also currently specified by user input.
For Type-1 vulnerabilities, we ingest relevant information from
NVD, including CVE ID, various CVSS v2 and v3 scores, ac-
cess complexity, CWE category, and natural language descrip-
tion. Additionally, we ingest information about the privileges
that an attacker will gain by exploiting the vulnerability. This
information, combined with access complexity, allows us to
construct attack graphs in the downstream modeling frame-
work. SCIBORG provides a pluggable interface that allows
users to define Type-2 and Type-3 vulnerabilities on a per-
component basis. Table III provides examples of Type-2 and
Type-3 vulnerabilities.

Ingesting dependency information: Information about depen-
dencies between components is extracted from two different
sources in SCIBORG: (i) direct user input, similar to ingestion
of Type-2 and Type-3 vulnerabilities, and (ii) third-party tools
such as NSDMiner [11] for discovering service dependencies
through traffic observation and call graph analysis. This infor-
mation is used to construct the dependency subgraph in the
downstream modeling framework.

Ingesting functionality requirements. SCIBORG distin-
guishes two classes of functionality requirements. The first
class is parameter range constraints specifying legitimate
ranges of values that can be assigned to parameters. Such
ranges are found through the configuration parameter informa-
tion extraction described above. The second class is function-
ality and performance requirements, ingested from user input
through an interface. SCIBORG models such requirements as
constraints in the configuration space and allows users to spec-
ify them using ingested parameter names as variables. These
constraints are specified in an SMTLIB-2.0 compliant manner
for efficient downstream use by the Reasoning Framework.

B. Modeling Framework

The SCIBORG Modeling Framework stores relationships
between system components, configuration parameters, config-
uration predicates, and vulnerabilities in a queryable, graph-
based form. It also provides an API to quantitatively evaluate
the security of different system configurations using topological
vulnerability analysis. The modeling framework is built on top
of Neo4j and converts all ingested information into a graphical
format. The APIs providing security evaluation and configura-
tion impact analysis are implemented as a Neo4j plugin that can
(i) analyze attack scenarios (i.e., sequences of vulnerabilities
that can be exploited by an attacker), (ii) compute various
attack surface metrics, and (iii) asses the security impact of
configuration changes. Fig. 8a illustrates the semantics of the
relationships between the various subgraphs of our model, and
Fig. 8b shows a partial graph of our testbed.

C. Reasoning Framework

The SCIBORG Reasoning Framework computes a new
configuration for the target system, across all components,
that minimizes security risk while preserving functionality. It
is written in Java with Microsoft Z3 as its solving engine.
To reason in the configuration space, SCIBORG constructs a
Constraint Satisfaction Problem (CSP) by querying the mod-
eling framework described in Section V-B. The variables in
the CSP correspond to unique names of nodes representing



(a) (b)

Fig. 8: (a) (Left) Semantics of the relationship among subgraphs, (b) (Right) Partial view of the graphical model of our IoT
testbed, produced by Neo4j.

configuration parameters. In addition, the CSP includes the
following types of constraints derived from the modeling
framework: (1) CurrentConfig constraints, i.e., predicates rep-
resenting assignment of current values to system parameters;
(2) Functional constraints, including predicates encoding func-
tionality requirements; (3) Security constraints of two kinds:
(a) negation of predicates that represent preconditions for Type-
2 vulnerabilities (i.e., bad security practices), and (b) predicates
that represent preconditions for enabling best security practices
(i.e., preventing Type-3 vulnerabilities).

Once the CSP problem is formulated, it is fed into Z3 to find
a solution with values for each parameter. SCIBORG assumes
that the initial system configuration has been at least partially
tested for functional and non-functional requirements, repre-
senting a reasonable starting point from which to find optimal
configurations, so it uses CurrentConfig constraints. In cases
where the current configuration is sub-optimal or violates se-
curity or functionality constraints, SCIBORG makes necessary
adjustments in the CSP, based on the desired reasoning strategy,
as described below. When the formulated CSP is not satisfiable,
solvers might return the unsatisfiable core, consisting of a set
of clauses whose conjunction is still unsatisfiable. If the CSP is
not satisfiable, we utilize unsatisfiable core information along
with constraint type and impact information (by querying the
modeling framework) to form a new CSP, by dropping certain
clauses from the unsatisfiable core of the previous CSP per
SCIBORG’s constraint relaxation strategy. This operation is
done for a number n of rounds until the CSP is satisfied, the
number of trials exceeds n, or the solver fails to produce both
the unsatisfiable core and a solution.

Constraint Relaxation Strategy. Our Reasoning Frame-
work can be configured to use one of three strategies in the
reasoning process: (i) Prioritize Functionality, (ii) Prioritize
Security, and (iii) No Priority. These strategies differ in the
way constraint relaxation occurs in the event of unsatisfiability
of a CSP formulated in a previous reasoning round. When
prioritizing functionality, SCIBORG forms the new CSP by

first removing constraints of type CurrentConfig that appear
in the unsatisfiable core of the previous CSP. If the problem
is still not satisfiable, it removes constraints of type Security
with the smallest security impact. When prioritizing security,
it forms the new CSP by first removing constraints of type
CurrentConfig that appear in the unsatisfiable core of the
previous CSP. If the problem is still not satisfiable, SCIBORG
removes Functional constraints. Note that the recommended
configuration found under this mode may violate functional
requirements and therefore should not be used for deployment.
However, it is useful in analysis and to further understand the
system requirements and their trade-offs with security. When
operating in No Priority mode, SCIBORG removes constraints
of type CurrentConfig that appear in the unsatisfiable core
of the previous CSP. If the problem is still unsatisfiable,
SCIBORG just reports the unsatisfiable core and exits.

D. Evidence Generation Framework

The Evidence Generation Framework provides graph-based
visualizations and human-readable text describing the opti-
mality of the computed configuration. It collects reasoning
artifacts, including unsatisfiable cores associated with each
reasoning round, dropped clauses and their impact, description
of vulnerabilities that have been addressed or are outstanding,
and renders them in different formats (e.g., PDF).

VI. SCIBORG EVALUATION

A. SCIBORG Evaluation Testbed

To evaluate SCIBORG, we built a physical testbed including
IoT devices, a mock office IT environment with virtualized
servers and PCs, test harness software to sense and actuate IT
and IoT components, and logging facilities. The test harness
software runs predefined scenarios that actuate experimental-
plane components and read their state to determine if the
experimental system is still operating as required after con-
figuration changes. The IoT components form two sets, a



TABLE III: Examples of Type-2 and Type-3 Vulnerabilities

Type-2 Vulnerability Testbed Component
Enabling packet forwarding by default OpenWRT Firewall
Allowing all protocols from WAN to LAN OpenWRT Firewall
Enabling packet forwarding by default OpenWRT Firewall
Disabling Tamper Siren Security Hub
Setting alarm duration to 0 Security Hub
Silencing all gateway sounds Security Hub
Using default or no password Open Sprinkler
Bypassing password check Open Sprinkler
Allowing App Installation from Unknown Sources Tablet
Enabling DDNS for a normal IoT device IP Camera
Disabling watermark IP Camera
Having short watermark characters IP Camera
Disabling Login Failure Monitoring IP Camera
Disabling Network Disconnect Monitoring IP Camera
Disabling IP Conflict Monitoring IP Camera
Disabling anti-lockout rule PFSense Firewall

Type-3 Vulnerability Testbed Component
Having (a potentially unnecessary) firewall rule
enabled (in a default deny setting)

PFSense Firewall

Disabling protection against DNS Rebinding at-
tacks

PFSense Firewall

Disabling logging for successful log-in attempts PFSense Firewall
Allowing login by-pass PFSense Firewall
Disabling protection against HTTP REFERER at-
tacks

PFSense Firewall

Not using HTTPS PFSense Firewall
Disabling Logging Open Sprinkler
Having High Login Failure Threshold IP Camera
Disabling Illegal Access Email Alerts IP Camera
Having Long Illegal Access Alarm RelayOut Delay IP Camera
Disabling Illegal Access Alarm RelayOut IP Camera
Disabling remotely locating the device Tablet
Using no API password Home Assistant

Consumer-IoT set, and an Industrial Control System-IoT (ICS-
IoT) set. IoT devices were selected to: (i) cover a breadth
of configuration space elements, from minimally configurable
(e.g., Wi-Fi light bulb) to extensively configurable (e.g., Wi-Fi
router); (ii) range from highly dependent on cloud services (e.g.,
Abode Security Hub) to fully self-contained (e.g., BrewPi); (iii)
span different physical connectivity methods (Wi-Fi, Ethernet,
Z-Wave); (iv) include both direct physical effects (e.g., light,
motion) and networked effects (e.g., network segmentation,
internet connectivity); (v) consist of commercially-available
and/or open-source off-the-shelf systems, for reproducibility.

The office IT environment comprises computer systems
and servers typically found in corporate IT networks, some
of which may interact with IoT devices and be critical to
their operation. They were chosen to represent a realistic IoT
environment that interacts with and depends on traditional
IT systems. The components are instrumented with out-of-
band sensors to provide ground truth as to their current state
(light on/off, door locked/unlocked, etc.). Thus, the actual
state of the system can be ascertained throughout experiments,
regardless of the reported state on the experiment plane (due to
misconfiguration, attacks, etc.). Fig. 9a shows the instrumented
Consumer-IoT components with sensors and actuators attached.
Sensors include a time-of-flight distance sensor to measure the

(a)

Open-
Sprinkler 

Pi
BrewPi Home 

Assistant
Wireless 
Router Enterprise

ICS 
192.168.9.0/24

pfSense (NAT 
+ Firewall)

LAN 
192.168.1.0/24

IP 
Camera

WiFi
Light 
Bulb

Abode 
Security 

Hub

Z-Wave 
Deadbolt

Z-Wave 
Door 

Sensor

WAN

(b)

Fig. 9: (a) IoT testbed and (b) testbed network topology.

Z-Wave Deadbolt position, digital inputs to measure the relay
outputs of the OpenSprinkler Pi or BrewPi, and a light sensor
to measure the Wi-Fi Lightbulb output. The testbed utilizes
Software Defined Networking, via Open vSwitch driven by
minimega, to define the network connectivity of the various
IoT components and emulated systems. The topology of the
testbed is shown in Fig. 9b. To use the testbed, the experimenter
configures the devices according to an experiment plan and
launches a scenario using the web interface. A scenario drives
the test harness software through a series of steps and validates
that the IoT devices and emulated IT systems are operating as
expected. This allows us to test whether SCIBORG’s recom-
mended configuration changes break functional requirements.

B. Evaluating SCIBORG on Testbed

As discussed before, SCIBORG ingests information about
system components, configuration parameters, and system re-
quirements from various sources. We ingest Type-1 vulnerabil-
ity information by running the OpenVAS scanner on different
network segments of the testbed and cross-referencing identi-
fied components and vulnerabilities with NVD using our own
tools. In addition, we ingest per-component Type-2 and Type-3
vulnerability information from user input.

Overall, SCIBORG reasoned on 5,460 vulnerabilities, 1,188
configuration parameters, and 43 components (including sub-
components). On average, it took SCIBORG 3 minutes and 14
seconds to populate a graphical model based on ingested data
using a MacBook Pro laptop and an additional 14 minutes and
4 seconds to compute an improved configuration by reasoning
on it. SCIBORG executed 433 rounds of reasoning to come
up with the new configuration for the entire system under its
Prioritize Functionality reasoning strategy. In every unsatisfied
reasoning round, SCIBORG reformulated the corresponding
constraint satisfaction problem by evaluating the impact of the
constraints of the unsatisfiable core for that round as described
in Section V. The SCIBORG evidence generation framework
summarizes the constraints that cause unsatisfiability as well
as their impact, giving the user full visibility into the compo-
sitional security analysis. As expected, the most challenging
part of using SCIBORG is the ingestion process. We make



this task easier by providing (i) customized ingestion tools
for common components (e.g., pfSense Firewall), and (ii) a
reusable library of Apache NiFi data ingestion flow templates.
While this is helpful, we plan to apply machine learning and
language processing techniques to further automate ingestion.

VII. RELATED WORK

The state of the art in configuration security focuses nar-
rowly on the configuration of individual system components
and lacks a principled approach to coping with the complex
relationships among the configuration parameters of a complex
composed system. Consequently, most existing approaches for
solving configuration errors cannot tackle errors involving
cross-component dependencies [18], let alone address the secu-
rity implications of such dependencies. Cross-component errors
are common [17] and may result in service disruptions that are
costly to identify and address. This issue becomes more critical
for complex systems where independent teams develop each
component. Malicious actors are likely to use such configura-
tion dependencies, alongside system vulnerabilities, to create
context-aware Advanced Persistent Threats (APTs). To address
this issue, we model a composed system as a multi-graph that
captures interdependencies and provides insight into security
optimization. This model finds the optimal configuration that
reduces the attack surface while ensuring that configuration and
functionality constraints are satisfied.

Assessing the impact of attacks on a system requires defining
its attack surface [15]. Attack metrics should accurately con-
sider all attack paths by conducting an in-depth analysis of each
path’s entry and exit points, implicit and explicit interdependen-
cies, and vulnerabilities [2]. The approach in [10] enumerates
reachable elements, but, while showing that systems with
fewer vulnerabilities are more secure, it does not account
for the cascading effects of these elements on the system if
compromised. Manadhata and Wing developed an entry/exit-
point framework, which considers the methods, channels, and
data items of a system, also known as resources. Intuitively,
their work implies that a larger attack surface makes a system
less secure. However, a larger attack surface is not necessarily
more vulnerable than a smaller one [6]. Past literature narrowly
measures attack surface either through an attacker-centric ap-
proach [13] or a system-centric approach [10]. However, using
these limited approaches produces an incomplete view of the
overall system security posture. To address these limitations, we
assess a system’s attack surface based on an in-depth analysis of
the impact of each multi-step attack, considering the complex
interdependencies among system components, vulnerabilities,
and configuration parameters.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

To our knowledge, SCIBORG is the first system to address
security misconfigurations in networked distributed systems.
It builds a graph-based model that captures relationships
among system vulnerabilities, configuration parameters, and
system components by ingesting information from multiple
sources (e.g., documentation, configuration files, vulnerability
databases). Using this model, SCIBORG formulates and solves

a constraint satisfaction problem to improve the configuration
based on the desired prioritization of security or functionality.

Future efforts will focus on further automating the data in-
gestion process. This will involve integrating with configuration
management systems, investigating annotation of configuration
files, and applying natural language processing to extract addi-
tional relationships among system components, parameters, and
vulnerabilities. We also plan to improve the speed of the rea-
soning framework, through better management of SMT solver
calls. Lastly, while the evaluation of SCIBORG’s recommended
configurations was mostly qualitative in nature, we plan to
develop metrics to measure the quality of the results.

REFERENCES

[1] OWASP top 10 - 2017: The ten most critical web application security
risks. Technical report, The OWASP Foundation, 2017.

[2] M. Albanese and S. Jajodia. A graphical model to assess the impact
of multi-step attacks. Journal of Defense Modeling and Simulation,
15(1):79–93, January 2018.

[3] M. Albanese, A. Pugliese, and V. Subrahmanian. Fast activity detec-
tion: Indexing for temporal stochastic automaton-based activity models.
IEEE Transactions on Knowledge and Data Engineering, 25(2):360–373,
February 2013.

[4] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based net-
work vulnerability analysis. In Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS 2002), pages 217–224,
Washington, DC, USA, November 2002. ACM.

[5] P. Bahl, P. Barham, R. Black, R. Chandra, M. Goldszmidt, R. Isaacs,
S. Kandula, L. Li, J. MacCormick, D. Maltz, R. Mortier, M. Wawrzoniak,
and M. Zhang. Discovering dependencies for network management. In
Proceedings of the 5th ACM Workshop on Hot Topics in Networking
(HotNets-V), pages 97–102, Irvine, CA, USA, November 2006. ACM.

[6] S. M. Bellovin. Attack surfaces. IEEE Security & Privacy, 14(3):88–88,
May 2016.

[7] S. Jajodia, S. Noel, and B. O’Berry. Managing Cyber Threats: Issues,
Approaches, and Challenges, volume 5 of Massive Computing, chapter
Topological Analysis of Network Attack Vulnerability, pages 247–266.
Springer, 2005.

[8] N. Kourtellis, G. De Francisci Morales, and F. Bonchi. Scalable
online betweenness centrality in evolving graphs. IEEE Transactions
on Knowledge and Data Engineering, 27(9):2494–2506, April 2015.

[9] D. J. Leversage and E. J. Byres. Estimating a system’s mean time-to-
compromise. IEEE Security & Privacy, 6(1):52–60, January 2008.

[10] P. K. Manadhata and J. M. Wing. An attack surface metric. IEEE
Transactions on Software Engineering, 37(3):371–386, May 2011.

[11] A. Natrajan, P. Ning, Y. Liu, S. Jajodia, and S. E. Hutchinson. NSDMiner:
Automated discovery of network service dependencies. In Proceedings
of the 31st Annual IEEE International Conference on Computer Com-
munications (IEEE INFOCOM 2012), pages 2507–2515, Orlando, FL,
USA, March 2012. IEEE.

[12] B. G. Ryder. Constructing the call graph of a program. IEEE Transactions
on Software Engineering, SE-5(3):216–226, May 1979.

[13] B. Schneier. Secrets and Lies: Digital Security in a Networked World,
chapter Attack Trees, pages 318–333. John Wiley & Sons, October 2015.

[14] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In Proceedings of the 2002
IEEE Symposium on Security and Privacy (S&P 2002), pages 273–284,
Oakland, CA, USA, May 2002. IEEE.

[15] C. Theisen, N. Munaiah, M. Al-Zyoud, J. C. Carver, A. Meneely, and
L. Williams. Attack surface definitions: A systematic literature review.
Information and Software Technology, 104:94–103, December 2018.

[16] S. Venkatesan, M. Albanese, and S. Jajodia. Disrupting stealthy botnets
through strategic placement of detectors. In Proceedings of the 3rd IEEE
Conference on Communications and Network Security (IEEE CNS 2015),
pages 55–63, Florence, Italy, September 2015. IEEE.

[17] M. Welsh. What I wish systems researchers would work on. http://matt-
welsh.blogspot.com/, May 2013.

[18] T. Xu and Y. Zhou. Systems approaches to tackling configuration errors:
A survey. ACM Computing Surveys, 47(4), July 2015.


