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Abstract—In the secure two-party computation problem, two
parties wish to compute a (possibly randomized) function of their
inputs via an interactive protocol, while ensuring that neither
party learns more than what can be inferred from only their
own input and output. For semi-honest parties and information-
theoretic security guarantees, it is well-known that, if only noise-
less communication is available, only a limited set of functions can
be securely computed; however, if interaction is also allowed over
general communication primitives (multi-input/output channels),
there are “complete” primitives that enable any function to
be securely computed. The general set of complete primitives
was characterized recently by Maji, Prabhakaran, and Rosulek
leveraging an earlier specialized characterization by Kilian. Our
contribution in this paper is a simple, self-contained, alternative
derivation using elementary information-theoretic tools.

I. INTRODUCTION

We consider the problem of secure two-party computation,
where two parties named Alice and Bob wish to correctly
and privately compute outputs from their initial individual
inputs, according to a (potentially randomized) function. Cor-
rectness means that the outputs should have the appropriate
conditional distribution (corresponding to the desired function)
with respect to the inputs. Privacy means that neither party
should learn anything about the other party’s input and output
besides what can be inferred from only their own input and
output. The aim is to construct an interactive protocol that
computes the desired function while satisfying these security
goals. We restrict our attention to passive (“honest but cu-
rious”) parties who will faithfully execute a given protocol,
but attempt to extract additional information from their views
of the execution. However, we require information-theoretic
privacy, providing unconditional security guarantees against
adversaries with even unbounded computational power.

We focus on the feasibility of constructing protocols for
general secure computation when the parties are allowed
unlimited interaction via noise-free communication as well
as via a given set of communication primitives1, which are
general memoryless two-way channels where each party may
have an input and an output. In the “from scratch” scenario,
where only noise-free communication is allowed and no ad-
ditional primitives are available, it is well-known that not all

1Primitives and functions are the same class of mathematical objects
(random channels where each party has an input and output), but we use
“primitives” to refer to the channels available for implementing a protocol,
while “function” refers to the secure computation objective of the protocol.

functions can be securely computed by two parties (see [1] for
example). However, given the availability of certain complete
primitives, protocols can be constructed to perform any general
computation. Oblivious transfer2 is a complete primitive [2], as
is any primitive that enables secure computation of oblivious
transfer as the desired function [3]. Identifying complete
primitives (and proposing efficient constructions) has been
an active area of research with several works characterizing
the complete primitives within specific subclasses: one-way
channels (primitives with one input and one output) [4], [5],
[6], joint sources (primitives with no inputs) [6], and primitives
with only one output or a common output [7]. Recently, a
general characterization of all complete primitives for the
passive secure two-party computation problem was given in [8]
by leveraging the specialized results of [7].

Our main contribution is a simple, self-contained, alter-
native derivation of the general characterization of complete
primitives using elementary information-theoretic tools, which
contrast with the detailed combinatorial analysis of protocol
structure given by [7] and leveraged by [8]. Our converse
proof is based on considering the subclass of secure two-party
sampling problems, where Alice and Bob have no initial inputs
and only wish to generate outputs according to a desired joint
distribution. This proof technique also clarifies a subtlety: that
a set of primitives that are each individually incomplete cannot
provide completeness when available together. Further, we
observe that the secure sampling problems exhibit a zero-one
law, in the sense that any set of primitives is either complete
or “useless”, i.e., allowing only a set of “trivial” distributions
to be sampled. The trivial distributions are those that can be
securely sampled from scratch, and were characterized in [9]
as those for which the mutual information is equal to the
common information3.

II. PROBLEM FORMULATION

A. Secure Two-Party Computation Protocols

Alice and Bob respectively start with inputs Q and T
with joint distribution P

Q,T

over the finite alphabet Q ⇥ T .
They wish to securely compute the (in general randomized)

2Oblivious transfer is the channel where Alice has a two-bit input and no
output, and Bob’s binary input selects one of Alice’s bits to be his output.

3This property is equivalent for the Wyner [10] and Gács-Körner [11]
notions of common information.



function P
X,Y |Q,T

. To realize this goal, they execute a two-
party computation protocol at the end of which Alice outputs
ˆX 2 X and Bob outputs ˆY 2 Y .

A protocol may involve multiple rounds of local compu-
tation interspersed with rounds of interaction via error-free
communication or through one of the available communication
primitives. A communication primitive is a channel with input
(A,B) in the finite alphabet A ⇥ B, output (U, V ) in the
finite alphabet U⇥V , and a conditional distribution P

U,V |A,B

.
Each primitive usage is “memoryless”, and Alice controls
input A and receives output U , while Bob controls input B
and receives output V . After the protocol terminates, Alice
and Bob generate their respective outputs via deterministic
functions of their respective views of the protocol. A party’s
view consists of its initial input, local computations, messages
sent/received, and inputs/outputs to/from the used primitives.

For simplicity, we only consider protocols that terminate in
a fixed (deterministic) number of rounds n, but do not put a
bound on n. A protocol consists of a sequence of steps that
governs how the views of the parties can evolve during the
protocol’s execution. The initial views of Alice and Bob are
their respective inputs and denoted by (R0, S0) := (Q,T ). Let
(R1, S1), . . . , (Rn

, S
n

) denote the sequence of their evolving
views over n rounds. In each round t of the protocol, the evo-
lution of views from (R

t�1, St�1) to (R
t

, S
t

) occurs via one
of three possible structured mechanisms: local computation,
error-free message passing, or primitive usage (if available).

• (Local computation) R
t

= (R
t�1, A) and S

t

=

(S
t�1, B), where A $ R

t�1 $ S
t�1 $ B is a Markov

chain.
• (Message passing) R

t

= (R
t�1, g(St�1)) and S

t

=

(S
t�1, f(Rt�1)), where f and g are some deterministic

functions.
• (Primitive usage) R

t

= (R
t�1, U) and S

t

= (S
t�1, V ),

where (U, V ) are the outputs of one of the given com-
munication primitives, with inputs A = f(R

t�1) and
B = g(S

t�1) generated via some deterministic functions
f and g, and P

U,V |A,B

corresponds to the distribution
governing the primitive used. The memoryless behavior
of the primitives implies that (U, V ) $ (A,B) $
(R

t�1, St�1) is a Markov chain.
After n rounds, outputs are generated deterministically from
the final views, that is, ˆX = �(R

n

) and ˆY =  (S
n

), for some
functions � and  .

B. Security Definitions
A protocol for computing P

X,Y |Q,T

is called ✏-correct if
and only if the following maximal variational distance does
not exceed ✏:

max

PQ,T

d(P
X̂,Ŷ |Q,T

P
Q,T

, P
X,Y |Q,T

P
Q,T

)  ✏,

where the variational distance is given by d(P
Ẑ

, P
Z

) :=

1
2

P
z

|P
Ẑ

(z) � P
Z

(z)|. A protocol is �-private if and only
if the maximal information leakage of the final views satisfies

max

PQ,T

I(R
n

;

ˆY , T | ˆX,Q) + I(S
n

;

ˆX,Q| ˆY , T )  �.

We will say that a protocol is (✏, �)-secure if and only if it
is ✏-correct and �-private. A function P

X,Y |Q,T

is said to be
securely computable given a set of primitives if and only if for
all ✏, � > 0, there exists a protocol for computing P

X,Y |Q,T

using the given primitives that is (✏, �)-secure. A primitive is
said to be complete if and only if any function is securely
computable given that primitive. A set of primitives is said to
incomplete if and only if some functions cannot be securely
computed via any protocols using that set of primitives. Note
that an incomplete set must be comprised of primitives that are
each individually incomplete. The reverse implication is not
immediately obvious but turns out to be true (see Theorem 1).

C. Secure Two-Party Sampling

The secure two-party sampling problem is the special case
where Alice and Bob have no inputs and the goal simplifies
to generating outputs with the joint distribution P

X,Y

. Their
initial views are constant R0 = S0 = 0 and the conditions for
✏-correctness and �-privacy simplify to d(P

X̂,Ŷ

, P
X,Y

)  ✏

and I(R
n

;

ˆY | ˆX) + I(S
n

;

ˆX| ˆY )  �, respectively.
The distributions that can be securely sampled via protocols

that use only error-free communication (and no other primi-
tives) will be called trivial, since they can always be securely
sampled regardless of the other primitives available. A set
of primitives is said to be useless for sampling if only the
trivial distributions can be securely sampled using that set of
primitives. Since secure sampling is a special case of secure
computation, a complete primitive allows any distribution to
be securely sampled. Hence, a set of primitives is incomplete
(for general computation) if it is useless for sampling.

III. CHARACTERIZATION RESULTS

A. Preliminaries

Common information plays a key role in the characteriza-
tions of both the secure sampling and computation problems.
There are two related (and somewhat complementary) notions
of common information, one introduced by Wyner [10] and the
other introduced by Gács-Körner [11]. We will review only the
Wyner common information here to allow us to quickly state
our results, and leave Gács-Körner common information and
other related concepts to be reviewed later in Section IV.

The Wyner common information of two random variables
(X,Y ) is given by

C(X;Y ) := min

Z:I(X;Y |Z)=0
I(X,Y ;Z),

where the minimum can be attained by a Z 2 Z with
|Z|  |X⇥Y| [10]. This quantity characterizes the solution of
the Gray-Wyner source coding problem. Note that, in general,
C(X;Y ) � I(X;Y ) [10].

It follows from the results of [9] and the continuity of Wyner
common information (see Lemma 4 in Section IV), that the
trivial distributions, i.e., those which can be securely sampled
from scratch, are precisely those where C(X;Y ) = I(X;Y )

(see Lemma 1 in Section IV for equivalent conditions). We
will hence use the terms trivial (and non-trivial) to refer to



joint distributions P
X,Y

which do (and, respectively, do not)
satisfy C(X;Y ) = I(X;Y ).

B. Main Results

The main theorem characterizes the complete primitives and
notes that incomplete primitives are useless for sampling.

Theorem 1. A primitive P
U,V |A,B

is complete if and only
if for uniformly distributed inputs (A,B) ⇠ Unif(A ⇥ B)
C(A,U ;B, V ) > I(A,U ;B, V ), where (U, V,A,B) ⇠
P
U,V |A,B

P
A,B

. Further, any set of incomplete primitives is
useless for sampling.

An interpretation of a complete primitive is that can be used,
with independent uniformly distributed inputs, to produce non-
trivially distributed randomness in the resultant views (A,U)

and (B, V ).
The following corollary characterizes the feasibility of se-

cure sampling, which exhibits a zero-one law: any set of
primitives is either complete or useless for sampling.

Corollary 1. Given any set of primitives, if at least one is
complete (see conditions in Theorem 1), then any distribution
P
X,Y

can be securely sampled. Otherwise, only the trivial
distributions, where C(X;Y ) = I(X;Y ), can be securely
sampled.

IV. PROPERTIES OF COMMON INFORMATION

This section reviews key concepts and results needed to
establish our main results. They are, however, also of inde-
pendent interest.

The graphical representation of P
X,Y

is the bipartite graph
with an edge between x 2 X and y 2 Y if and only if
P
X,Y

(x, y) > 0. The common part of two random variables
(X,Y ), denoted by W

X,Y

, is the (unique) label of the con-
nected component of the graphical representation of P

X,Y

in
which (X,Y ) falls. Note that W

X,Y

is a deterministic function
of X alone and also a deterministic function of Y alone.

The Gács-Körner common information of two random
variables (X,Y ) is given by K(X;Y ) := H(W

X,Y

) [11].
The operational significance of K(X;Y ) is that it is the
maximum number of common bits per symbol that can be
independently extracted from X and Y . Note that, in general,
K(X;Y )  I(X;Y ) [11].

While it may be tedious, in general, to solve the optimiza-
tion problem that defines Wyner common information, one can
conveniently check if it is equal to its lower bound by using its
well-known relationship to Gács-Körner common information
and other properties given in the following lemma (see [12]).

Lemma 1. [12] For any random variables (X,Y ), the fol-
lowing are equivalent:

1) C(X;Y ) = I(X;Y ),
2) K(X;Y ) = I(X;Y ),
3) There exists Z such that Z $ X $ Y , Z $ Y $ X ,

and X $ Z $ Y are all Markov chains,
4) X $ W

X,Y

$ Y is a Markov chain, where W
X,Y

is
the common part of (X,Y ).

One can also determine whether common information is
equal to mutual information by checking if conditional entropy
is positive after “removing redundancies” from the random
variables. To remove redundancy from X with respect to
P
X,Y

, first partition the support of P
X

into equivalence
classes using P

Y |X=x

= P
Y |X=x

0 as the equivalence rule for
x, x0 2 X , then uniquely label these classes and define ˜X
as the label of the class in which X falls. Similarly, ˜Y can
be defined as Y with redundancies removed. Note that, by
construction, X $ ˜X $ ˜Y $ Y is a Markov chain.

Lemma 2. For any random variables (X,Y ), the following
are equivalent:

1) C(X;Y ) = I(X;Y ) = K(X;Y ),
2) H(

˜X| ˜Y ) = 0,
3) H(

˜Y | ˜X) = 0,

where (

˜X, ˜Y ) are (X,Y ) with redundancies removed.

Proof: This lemma can be shown to follow from the
monotone region results of [13]. We, however, provide a sim-
pler, self-contained proof here. Any x, x0 2 X with P

Y |X=x

=

P
Y |X=x

0 are clearly in the same connected component of the
graphical representation of P

X,Y

. If X $ W
X,Y

$ Y is a
Markov chain, then for any symbols x, x0 2 X attached to
the same connected component, P

Y |X=x

= P
Y |X=x

0 . Thus,
given condition 1, we find that W

X,Y

, ˜X , and ˜Y (via similar
arguments) are equivalent, that is, W

X,Y

= f( ˜X) = g( ˜Y )

for some bijective functions f and g. Hence, it follows that
condition 1 implies condition 2 and 3. Given condition 2, ˜X is
a function of ˜Y , and hence a function of Y . By construction, ˜X
is a function of X , and X $ ˜X $ ˜Y $ Y is a Markov chain.
Hence, X $ ˜X $ Y , ˜X $ X $ Y , and ˜X $ Y $ X
are all Markov chains and condition 1 holds by Lemma 1.
Similarly, condition 3 also implies condition 1.

Another useful property for checking whether the Wyner
common information is close to the mutual information is
given in the next lemma from [9].

Lemma 3. [9] For any random variables (X,Y ), C(X;Y )�
I(X;Y )  � if and only if there exist Z such that X $ Z $
Y is a Markov chain, and I(Z;X|Y ) + I(Z;Y |X)  �.

Wyner common information is a uniformly continuous
functional of P

X,Y

for all P
X,Y

as established in the next
lemma. The Gács-Körner common information, in contrast, is
discontinuous.

Lemma 4. If P
X,Y

, P
X̂,Ŷ

are joint distributions over the
same finite alphabet X ⇥ Y with variational distance
d(P

X̂,Ŷ

, P
X,Y

)  ✏, then |C(X;Y ) � C(

ˆX;

ˆY )|  ↵(✏), for
some function ↵ where ↵(✏) �! 0 as ✏ �! 0.

Proof: One can construct random variables (X,Y ) ⇠
P
X,Y

and (

ˆX, ˆY ) ⇠ P
X̂,Ŷ

such that Pr
�
(

ˆX, ˆY ) 6= (X,Y )

�
=

d(P
X̂,Ŷ

, P
X,Y

) [14]. Let Z be the random variable such that
C(X;Y ) = I(X,Y ;Z) and X $ Z $ Y is a Markov chain.



Next, let

ˆZ :=

(
(Z,?,?), when (

ˆX, ˆY ) = (X,Y ),

(?, ˆX, ˆY ), when (

ˆX, ˆY ) 6= (X,Y ),

where ? is a constant symbol not in the alphabets X , Y , or
Z . By construction, ˆX $ ˆZ $ ˆY is a Markov chain, and
Pr

�
(

ˆX, ˆY , ˆZ) 6= (X,Y, (Z,?,?))

�
 ✏. Thus,

C(

ˆX;

ˆY )  I( ˆX, ˆY ;

ˆZ)  I(X,Y ;Z) + ↵(✏)

= C(X;Y ) + ↵(✏)

for some ↵(✏) with ↵(✏) �! 0 as ✏ �! 0, where the
second inequality follows due to the uniform continuity of
entropy [14]. Symmetrically, we can argue that C(X;Y ) 
C(

ˆX;

ˆY )+↵(✏), and hence |C(X;Y )�C(

ˆX;

ˆY )|  ↵(✏).

V. PROOF OF THEOREM 1

A. Converse Result

We will show that, given any set of primitives that each
fail to satisfy the completeness conditions, only trivial distri-
butions can be securely sampled, and hence the primitives are
incomplete and useless. The first part of our converse proof
is closely related to the method of monotones – functionals
that are monotonic over the sequence of views – introduced
in [15]. Specifically, we will show that the distributions of
the views P

Rt,St will remain trivial throughout the execution
of the protocol. Then, we will argue that given final views
(R

n

, S
n

) with a trivial distribution, only “almost trivial” (in
the sense of Wyner common information being close to mutual
information) outputs can be securely produced by a �-private
protocol. This result, in conjunction with the continuity of
Wyner common information (see Lemma 4), implies that only
trivial distributions can be securely sampled.

The next two lemmas establish that if we start with views
(R

t�1, St�1) that have a trivial distribution, then the views
(R

t

, S
t

), after respectively local computation and message
passing, must also have a trivial distribution. These two
lemmas can be shown to follow from results in [15]; however,
we give short, self-contained proofs here.

Lemma 5. Let C(R;S) = I(R;S). If A $ R $ S $ B is
a Markov chain then C(A,R;B,S) = I(A,R;B,S).

Proof: Let W
R,S

be the common part of random vari-
ables (R,S). Since C(R;S) = I(R;S), it follows that
R $ W

R,S

$ S is a Markov chain. Since W
R,S

is
a function of R alone and S alone, it also follows that
(A,R) $ W

R,S

$ (B,S) is a Markov chain. Hence
C(A,R;B,S) = I(A,R;B,S) by Lemma 1.

Lemma 6. Let C(R;S) = I(R;S). If f, g are deterministic
functions then C(R, g(S);S, f(R)) = I(R, g(S);S, f(R)).

Proof: Let W
R,S

be the common part of (R,S) and
Z := (W

R,S

, f(R), g(S)). Since Z is a function of (R, g(S))
alone and (S, f(R)) alone, (R, g(S)) $ (S, f(R)) $ Z and

(S, f(R)) $ (R, g(S)) $ Z are both Markov chains. Since

I(R, g(S);S, f(R)|Z) = I(R;S|W
R,S

, f(R), g(S))

 I(R, f(R);S, g(S)|W
R,S

) = I(R;S|W
R,S

) = 0,

it follows that (R, g(S)) $ Z $ (S, f(R)) is a Markov
chain. Hence, C(R, g(S);S, f(R)) = I(R, g(S);S, f(R)) by
Lemma 1.

The following Lemma 8 establishes that if we start from
views (R

t�1, St�1) with a trivial distribution, then using a
primitive that does not meet the completeness conditions, with
any inputs A = f(R

t�1) and B = g(S
t�1), results in views

(R
t

, S
t

) := ((R
t�1, U), (S

t�1, V )) that also have a trivial
distribution. First, we show an auxiliary result in Lemma 7
to facilitate the proof of Lemma 8.

Lemma 7. If a primitive P
U,V |A,B

does not meet the
completeness conditions of Theorem 1, then for all ran-
dom variables A 2 A, B 2 B, Z such that
A $ Z $ B forms a Markov chain, we have
that C(Z,A,U ;Z,B, V ) = I(Z,A,U ;Z,B, V ), where
(U, V,A,B,Z) ⇠ P

U,V |A,B

P
A,B,Z

.

Proof: TODO: NEED TO FINISH THIS Let
(

ˆU, ˆV , ˆA, ˆB) ⇠ P
U,V |A,B

P
Â,B̂

, where P
Â,B̂

is the uniform
distribution over A ⇥ B, that is (

ˆA, ˆB) are independent
uniformly distributed inputs to the primitive and (

ˆU, ˆV ) are the
corresponding outputs. Consider the graphical representation
of joint distribution between (

ˆA, ˆU) and (

ˆB, ˆV ).
Let ˆW := W(Â,Û),(B̂,V̂ ) be the common part of ( ˆA, ˆU) and

(

ˆB, ˆV ), and let � : A⇥ U ! W and  : B ⇥ V ! W be the
deterministic functions such that ˆW = �( ˆA, ˆU) =  ( ˆB, ˆV ).
Since the primitive does not meet the completeness conditions,
we have, by Lemma 1, that P

Û,V̂ |Â,B̂,Ŵ

= P
Û |Â,Ŵ

P
V̂ |B̂,Ŵ

.

Lemma 8. If a primitive P
U,V |A,B

does not meet the
completeness conditions of Theorem 1, then for all ran-
dom variables (R,S) such that C(R;S) = I(R;S) and
functions f : R ! A, g : S ! B, we have that
C(R,U ;S, V ) = I(R,U ;S, V ), where A = f(R), B = g(R),
and (U, V,A,B) ⇠ P

U,V |A,B

P
A,B

.

Proof: Let W
R,S

be the common part of (R,S). By
Lemma 1, we have that (A,R) $ W

R,S

$ (B,S)
is a Markov chain. Thus, by Lemma 7, we have that
C(W

R,S

, A, U ;W
R,S

, B, V ) = I(W
R,S

, A, U ;W
R,S

, B, V ).
Since (U, V ) $ (A,B) $ (R,S,W

R,S

) is a Markov
chain, R $ (W

R,S

, A, U) $ (W
R,S

, B, V ) $ S
is also a Markov chain. Thus, by Lemma 5, we have
that C(R,U ;S, V ) = C(R,W

R,S

, A, U ;S,W
R,S

, B, V ) =

I(R,W
R,S

, A, U ;S,W
R,S

, B, V ) = I(R,U ;S, V ).
Combining Lemmas 5, 6, and 8, and noting that the initial

views (R0, S0) := (0, 0) are trivial, we can conclude that the
final views (R

n

, S
n

) also have a trivial distribution.
The next lemma establishes that for any �-private protocol,

if the final views have a trivial distribution, then the outputs
must satisfy C(

ˆX;

ˆY )� I( ˆX;

ˆY )  �.



Lemma 9. Let C(R;S) = I(R;S). If (�, ) are deterministic
functions such that I(R; (S)|�(R)) + I(S;�(R)| (S))  �
then C(�(R); (S))� I(�(R); (S))  �.

Proof: Let W
R,S

be the common part of (R,S). Since
� and  are deterministic functions, it follows that �(R) $
W

R,S

$  (S) is a Markov chain. Using the property that
W

R,S

is a function of R,

I(W
R,S

; (S)|�(R))

= H( (S)|�(R))�H( (S)|�(R),W
R,S

)

 H( (S)|�(R))�H( (S)|�(R), R)

= I(R; (S)|�(R)).

Similarly, I(W
R,S

;�(R)| (S))  I(S;�(R)| (S)) follows.
Thus, I(W

R,S

; (S)|�(R)) + I(W
R,S

;�(R)| (S))  �, and
hence, C(�(R); (S))� I(�(R); (S))  � by Lemma 3.

Thus, if P
X,Y

can be securely sampled given a set of prim-
itives that do not satisfy the completeness conditions, then for
any ✏, � > 0 there exists P

X̂,Ŷ

such that d(P
X̂,Ŷ

, P
X,Y

)  ✏

and C(

ˆX;

ˆY ) � I( ˆX;

ˆY )  �. Finally, due to the continuity
of Wyner common information (see Lemma 4) and entropy, it
follows that P

X,Y

must be trivial.

B. Achievability Sketch

Due to space restrictions and since the essential techniques
are well-known in the literature, we will only sketch the
overall scheme for securely computing any function given
a primitive satisfying the completeness conditions. Also, we
aim only to describe a general but straight-forward approach
to show feasibility. Of course, more complex approaches
or specialized methods exploiting the structure of particular
problem instances may yield more efficient schemes. The
overall achievability argument follows these high-level steps:

1) Given a primitive satisfying the completeness condi-
tions, we can construct a protocol which can simulate a
source primitive P

U,V

that has a non-trivial distribution.
2) The simulated source primitive with a non-trivial distri-

bution can be converted into a binary erasure source via
the methods of [6].

3) Continuing with the methods of [6], the binary erasure
source can be used to perform oblivious transfers.

4) Using the methods of [2], general secure computation
can be performed via the oblivious transfers.

We further explain these steps below.
Step 1) Given a primitive satisfying the completeness condi-

tions, Alice and Bob can use the primitive to simulate a source
primitive (one with no inputs) with a non-trivial distribution
by respectively generating independent, uniform inputs A ⇠
Unif(A) and B ⇠ Unif(B). This procedure results in Alice and
Bob respectively holding ˆU := (A,U) and ˆV := (B, V ) that
have the non-trivial distribution P

Û,V̂

:= P(A,U),(B,V ), and
can be independently repeated to generate an iid sequence of
sample pairs from the non-trivial distribution P

Û,V̂

.
Step 2) The methods of [6] require a source primitive P

U,V

with H(

˜U | ˜V ) > 0 where (

˜U, ˜V ) are the random variables

(U, V ) with redundancies removed. However, by Lemma 2,
this is equivalent to requiring a source primitive with a non-
trivial distribution. Due to the properties of distributions with
H(

˜U | ˜V ) > 0, sample pairs from this non-trivial source can
be selectively discarded, leaving behind sample pairs that
essentially have a binary erasure source distribution, where
Alice’s sample is a uniform bit and Bob’s sample is either
equal to Alice’s or an erasure symbol (see [6] for details).

Step 3) Using these binary erasure source sample pairs,
one can perform oblivious transfer, that is, to essentially
simulate the primitive P

U,V |A,B

where A := (A0, A1),
A0, A1, B 2 {0, 1}, and (U, V ) := (0, A

B

) (see [6]). Bob
first chooses two sample pairs of the binary erasure source for
which there is exactly one erasure, and then instructs Alice to
respectively exclusive-or her two input bits (A0, A1) with the
two corresponding bits she has from her half of the erasure
source such that the non-erased bit is aligned with the input
that Bob wants (according to B). By sending the result to Bob
over the error-free channel, he can recover A

B

, while Alice’s
other bit is masked due to the erasure.

Step 4) Using the methods of [2], the ability to perform
oblivious transfers can be leveraged to compute any secure
computation. For approximating P

X,Y |Q,T

P
Q,T

within any
variational distance ✏ > 0, the outputs (

ˆX, ˆY ) could be
computed from a boolean circuit with a uniformly random
sequence of bits as input. Each party first independently
generates a uniformly random sequence of bits. Using these
as shares of the input sequence, the parties then apply the
methods of [2] for securely evaluating the circuit to generate
their respective outputs.

Note that evaluating the circuit in the last step requires a
fixed number of oblivious transfers; however, the number that
can actually be performed depends on the random number
of binary erasure sample pairs extracted in the second step.
With a protocol of fixed length (and hence fixed primitive
usages), the situation of insufficient erasure samples can be
handled as an error event leading to a constant output, and its
effect can be made asymptotically small and hence within any
✏ approximation error. This approach also has the benefit of
yielding constructions that are perfectly private (� = 0).
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